Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 14(8): 2124-2133, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429753

RESUMO

Impending anthropogenic climate change will severely impact coastal organisms at unprecedented speed. Knowledge on organisms' evolutionary responses to past sea-level fluctuations and estimation of their evolutionary potential is therefore indispensable in efforts to mitigate the effects of future climate change. We sampled tens of thousands of genomic markers of ~300 individuals in two of the four extant horseshoe crab species across the complex archipelagic Singapore Straits. Carcinoscorpius rotundicauda Latreille, a less mobile mangrove species, has finer population structure and lower genetic diversity compared with the dispersive deep-sea Tachypleus gigas Müller. Even though the source populations of both species during the last glacial maximum exhibited comparable effective population sizes, the less dispersive C. rotundicauda seems to lose genetic diversity much more quickly because of population fragmentation. Contra previous studies' results, we predict that the more commonly sighted C. rotundicauda faces a more uncertain conservation plight, with a continuing loss in evolutionary potential and higher vulnerability to future climate change. Our study provides important genomic baseline data for the redirection of conservation measures in the face of climate change and can be used as a blueprint for assessment and mitigation of the adverse effects of impending sea-level rise in other systems.

2.
Sci Adv ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523858

RESUMO

The rules underlying the structure of antigen receptor repertoires are not yet fully defined, despite their enormous importance for the understanding of adaptive immunity. With current technology, the large antigen receptor repertoires of mice and humans cannot be comprehensively studied. To circumvent the problems associated with incomplete sampling, we have studied the immunogenetic features of one of the smallest known vertebrates, the cyprinid fish Paedocypris sp. "Singkep" ("minifish"). Despite its small size, minifish has the key genetic facilities characterizing the principal vertebrate lymphocyte lineages. As described for mammals, the frequency distributions of immunoglobulin and T cell receptor clonotypes exhibit the features of fractal systems, demonstrating that self-similarity is a fundamental property of antigen receptor repertoires of vertebrates, irrespective of body size. Hence, minifish achieve immunocompetence via a few thousand lymphocytes organized in robust scale-free networks, thereby ensuring immune reactivity even when cells are lost or clone sizes fluctuate during immune responses.

4.
Mol Ecol Resour ; 20(6): 1748-1760, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32725950

RESUMO

Horseshoe crabs, represented by only four extant species, have existed for around 500 million years. However, their existence is now under threat because of anthropogenic activities. The availability of genomic resources for these species will be valuable in planning appropriate conservation measures. Whole-genome sequences are currently available for three species. In this study, we have generated a chromosome-level genome assembly of the fourth species, the Asian coastal horseshoe crab (Tachypleus gigas; genome size 2.0 Gb). The genome assembly has a scaffold N50 value of 140 Mb with ~97% of the assembly mapped to 14 scaffolds representing 14 chromosomes of T. gigas. In addition, we have generated the complete mitochondrial genome sequence and deep-coverage transcriptome assemblies for four tissues. A total of 26,159 protein-coding genes were predicted in the genome. The T. gigas genome contains five Hox clusters similar to the mangrove horseshoe crab (Carcinoscorpius rotundicauda), suggesting that the common ancestor of horseshoe crabs already possessed five Hox clusters. Phylogenomic and divergence time analysis suggested that the American and Asian horseshoe crab lineages shared a common ancestor around the Silurian period (~436 Ma). Comparison of the T. gigas genome with those of other horseshoe crab species with chromosome-level assemblies provided insights into the chromosomal rearrangement events that occurred during the emergence of these species. The genomic resources of T. gigas will be useful for understanding their genetic diversity and population structure and would help in designing strategies for managing and conserving their stocks across Asia.


Assuntos
Genoma Mitocondrial , Caranguejos Ferradura , Animais , Ásia , Cromossomos , Genômica , Caranguejos Ferradura/genética , Filogenia
5.
Nat Commun ; 11(1): 2322, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385269

RESUMO

The evolutionary history of horseshoe crabs, spanning approximately 500 million years, is characterized by remarkable morphological stasis and a low species diversity with only four extant species. Here we report a chromosome-level genome assembly for the mangrove horseshoe crab (Carcinoscorpius rotundicauda) using PacBio reads and Hi-C data. The assembly spans 1.67 Gb with contig N50 of 7.8 Mb and 98% of the genome assigned to 16 chromosomes. The genome contains five Hox clusters with 34 Hox genes, the highest number reported in any invertebrate. Detailed analysis of the genome provides evidence that suggests three rounds of whole-genome duplication (WGD), raising questions about the relationship between WGD and species radiation. Several gene families, particularly those involved in innate immunity, have undergone extensive tandem duplication. These expanded gene families may be important components of the innate immune system of horseshoe crabs, whose amebocyte lysate is a sensitive agent for detecting endotoxin contamination.


Assuntos
Genoma/genética , Caranguejos Ferradura/genética , Animais , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Família Multigênica/genética , Filogenia
6.
Sci Rep ; 9(1): 19559, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863055

RESUMO

The transcription factor Pax6 is crucial for the development of the central nervous system, eye, olfactory system and pancreas, and is implicated in human disease. While a single Pax6 gene exists in human and chicken, Pax6 occurs as a gene family in other vertebrates, with two members in elephant shark, Xenopus tropicalis and Anolis lizard and three members in teleost fish such as stickleback and medaka. However, the complement of Pax6 genes in jawless vertebrates (cyclostomes), the sister group of jawed vertebrates (gnathostomes), is unknown. Using a combination of BAC sequencing and genome analysis, we discovered three Pax6 genes in lampreys. Unlike the paired-less Pax6 present in some gnathostomes, all three lamprey Pax6 have a highly conserved full-length paired domain. All three Pax6 genes are expressed in the eye and brain, with variable expression in other tissues. Notably, lamprey Pax6α transcripts are found in the pancreas, a vertebrate-specific organ, indicating the involvement of Pax6 in development of the pancreas in the vertebrate ancestor. Multi-species sequence comparisons revealed only a single conserved non-coding element, in the lamprey Pax6ß locus, with similarity to the PAX6 neuroretina enhancer. Using a transgenic zebrafish enhancer assay we demonstrate functional conservation of this element over 500 million years of vertebrate evolution.


Assuntos
Encéfalo/metabolismo , Olho/metabolismo , Lampreias/metabolismo , Fator de Transcrição PAX6/metabolismo , Pâncreas/inervação , Fatores de Transcrição/metabolismo , Vertebrados/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Evolução Molecular , Fator de Transcrição PAX6/química , Fatores de Transcrição/química , Peixe-Zebra
7.
Int J Mol Sci ; 20(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083458

RESUMO

To appraise how evolutionary processes, such as gene duplication and loss, influence an organism's xenobiotic sensitivity is a critical question in toxicology. Of particular importance are gene families involved in the mediation of detoxification responses, such as members of the nuclear receptor subfamily 1 group I (NR1I), the pregnane X receptor (PXR), and the constitutive androstane receptor (CAR). While documented in multiple vertebrate genomes, PXR and CAR display an intriguing gene distribution. PXR is absent in birds and reptiles, while CAR shows a tetrapod-specific occurrence. More elusive is the presence of PXR and CAR gene orthologs in early branching and ecologically-important Chondrichthyes (chimaeras, sharks and rays). Therefore, we investigated various genome projects and use them to provide the first identification and functional characterization of a Chondrichthyan PXR from the chimaera elephant shark (Callorhinchus milii, Holocephali). Additionally, we substantiate the targeted PXR gene loss in Elasmobranchii (sharks and rays). Compared to other vertebrate groups, the chimaera PXR ortholog displays a diverse expression pattern (skin and gills) and a unique activation profile by classical xenobiotic ligands. Our findings provide insights into the molecular landscape of detoxification mechanisms and suggest lineage-specific adaptations in response to xenobiotics in gnathostome evolution.


Assuntos
Elasmobrânquios/classificação , Elasmobrânquios/genética , Evolução Molecular , Redes Reguladoras de Genes , Filogenia , Receptor de Pregnano X/genética , Animais , Células COS , Chlorocebus aethiops , Genes Reporter , Inativação Metabólica/genética , Luciferases/metabolismo , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Sintenia/genética , Ativação Transcricional/genética
8.
Front Neurosci ; 12: 607, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237760

RESUMO

The neuropeptide gonadotropin-releasing hormone (GnRH) plays an important role in the control of reproductive functions. Vertebrates possess multiple GnRH forms that are classified into three main groups, namely GnRH1, GnRH2, and GnRH3. In order to gain more insights into the GnRH gene family in vertebrates, we sought to identify which paralogs of this family are present in cartilaginous fish. For this purpose, we searched the genomes and/or transcriptomes of three representative species of this group, the small-spotted catshark, Scyliorhinus canicula, the whale shark, Rhincodon typus and the elephant shark Callorhinchus milii. In each species, we report the identification of three GnRH genes. In catshark and whale shark, phylogenetic and synteny analysis showed that these three genes correspond to GnRH1, GnRH2, and GnRH3. In both species, GnRH1 was found to encode a novel form of GnRH whose primary structure was determined as follows: QHWSFDLRPG. In elephant shark, the three genes correspond to GnRH1a and GnRH1b, two copies of the GnRH1 gene, plus GnRH2. 3D structure prediction of the chondrichthyan GnRH-associated peptides (GAPs) revealed that catshark GAP1, GAP2, and elephant shark GAP2 peptides exhibit a helix-loop-helix (HLH) structure. This structure observed for many osteichthyan GAP1 and GAP2, may convey GAP biological activity. This HLH structure could not be observed for elephant shark GAP1a and GAP1b. As for all other GAP3 described so far, no typical 3D HLH structure was observed for catshark nor whale shark GAP3. RT-PCR analysis revealed that GnRH1, GnRH2, and GnRH3 genes are differentially expressed in the catshark brain. GnRH1 mRNA appeared predominant in the diencephalon while GnRH2 and GnRH3 mRNAs seemed to be most abundant in the mesencephalon and telencephalon, respectively. Taken together, our results show that the GnRH gene repertoire of the vertebrate ancestor was entirely conserved in the chondrichthyan lineage but that the GnRH3 gene was probably lost in holocephali. They also suggest that the three GnRH neuronal systems previously described in the brain of bony vertebrates are also present in cartilaginous fish.

9.
Cell ; 172(4): 667-682.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425489

RESUMO

Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.


Assuntos
Proteínas Aviárias , Galinhas/fisiologia , Evolução Molecular , Proteínas de Peixes , Proteínas de Homeodomínio , Rede Nervosa/fisiologia , Rajidae/fisiologia , Fatores de Transcrição , Caminhada/fisiologia , Peixe-Zebra/fisiologia , Nadadeiras de Animais/fisiologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/fisiologia , Natação/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(34): 9146-9151, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784804

RESUMO

ParaHox genes (Gsx, Pdx, and Cdx) are an ancient family of developmental genes closely related to the Hox genes. They play critical roles in the patterning of brain and gut. The basal chordate, amphioxus, contains a single ParaHox cluster comprising one member of each family, whereas nonteleost jawed vertebrates contain four ParaHox genomic loci with six or seven ParaHox genes. Teleosts, which have experienced an additional whole-genome duplication, contain six ParaHox genomic loci with six ParaHox genes. Jawless vertebrates, represented by lampreys and hagfish, are the most ancient group of vertebrates and are crucial for understanding the origin and evolution of vertebrate gene families. We have previously shown that lampreys contain six Hox gene loci. Here we report that lampreys contain only two ParaHox gene clusters (designated as α- and ß-clusters) bearing five ParaHox genes (Gsxα, Pdxα, Cdxα, Gsxß, and Cdxß). The order and orientation of the three genes in the α-cluster are identical to that of the single cluster in amphioxus. However, the orientation of Gsxß in the ß-cluster is inverted. Interestingly, Gsxß is expressed in the eye, unlike its homologs in jawed vertebrates, which are expressed mainly in the brain. The lamprey Pdxα is expressed in the pancreas similar to jawed vertebrate Pdx genes, indicating that the pancreatic expression of Pdx was acquired before the divergence of jawless and jawed vertebrate lineages. It is likely that the lamprey Pdxα plays a crucial role in pancreas specification and insulin production similar to the Pdx of jawed vertebrates.


Assuntos
Genes Homeobox/genética , Lampreias/genética , Família Multigênica , Vertebrados/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Filogenia , Homologia de Sequência de Aminoácidos , Vertebrados/classificação
11.
Gigascience ; 5(1): 36, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27609345

RESUMO

BACKGROUND: The ocean sunfish (Mola mola), which can grow up to a length of 2.7 m and weigh 2.3 tons, is the world's largest bony fish. It has an extremely fast growth rate and its endoskeleton is mainly composed of cartilage. Another unique feature of the sunfish is its lack of a caudal fin, which is replaced by a broad and stiff lobe that results in the characteristic truncated appearance of the fish. RESULTS: To gain insights into the genomic basis of these phenotypic traits, we sequenced the sunfish genome and performed a comparative analysis with other teleost genomes. Several sunfish genes involved in the growth hormone and insulin-like growth factor 1 (GH/IGF1) axis signalling pathway were found to be under positive selection or accelerated evolution, which might explain its fast growth rate and large body size. A number of genes associated with the extracellular matrix, some of which are involved in the regulation of bone and cartilage development, have also undergone positive selection or accelerated evolution. A comparison of the sunfish genome with that of the pufferfish (fugu), which has a caudal fin, revealed that the sunfish contains more homeobox (Hox) genes although both genomes contain seven Hox clusters. Thus, caudal fin loss in sunfish is not associated with the loss of a specific Hox gene. CONCLUSIONS: Our analyses provide insights into the molecular basis of the fast growth rate and large size of the ocean sunfish. The high-quality genome assembly generated in this study should facilitate further studies of this 'natural mutant'.


Assuntos
Genoma , Perciformes/crescimento & desenvolvimento , Análise de Sequência de DNA/métodos , Animais , Evolução Molecular , Perciformes/genética , Filogenia , Takifugu/anatomia & histologia , Takifugu/genética
12.
Gen Comp Endocrinol ; 237: 89-97, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524287

RESUMO

Somatostatins (SSs) are a structurally diverse family of neuropeptides that play important roles in the regulation of growth, development and metabolism in vertebrates. It has been recently proposed that the common ancestor of gnathostomes possessed three SS genes, namely SS1, SS2 and SS5. SS1 and SS2 are still present in most extant gnathostome species investigated so far while SS5 primarily occurs in chondrichthyes, actinopterygians and actinistia but not in tetrapods. Very little is known about the repertoire of SSs in cyclostomes, which are extant jawless vertebrates. In the present study, we report the cloning of the cDNAs encoding three distinct lamprey SS variants that we call SSa, SSb and SSc. SSa and SSb correspond to the two SS variants previously characterized in lamprey, while SSc appears to be a totally novel one. SSa exhibits the same sequence as gnathostome SS1. SSb differs from SSa by only one substitution (Thr12→Ser). SSc exhibits a totally unique structure (ANCRMFYWKTMAAC) that shares only 50% identity with SSa and SSb. SSa, SSb and SSc precursors do not exhibit any appreciable sequence similarity outside the C-terminal region containing the SS sequence. Phylogenetic analyses failed to clearly assign orthology relationships between lamprey and gnathostome SS genes. Synteny analysis suggests that the SSc gene arose before the split of the three gnathostome genes SS1, SS2 and SS5.


Assuntos
Lampreias/genética , Somatostatina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Evolução Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Somatostatina/química , Sintenia/genética
13.
Sci Rep ; 6: 24501, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27089831

RESUMO

The Asian arowana (Scleropages formosus), one of the world's most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas.


Assuntos
Evolução Molecular , Peixes/genética , Genoma , Filogenia , Animais , Feminino , Repetições de Microssatélites/genética , Cromossomos Sexuais/genética
14.
Genes Dev ; 30(3): 281-92, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26798135

RESUMO

The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family--Tp53, Tp63, and Tp73--as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53-Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway.


Assuntos
Lampreias/genética , Lampreias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Sequência Conservada , Genoma , Humanos , Lampreias/classificação , Camundongos , Modelos Moleculares , Filogenia , Ligação Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
15.
Mol Biol Evol ; 33(2): 311-5, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26545918

RESUMO

The brain, comprising billions of neurons and intricate neural networks, is arguably the most complex organ in vertebrates. The diversity of individual neurons is fundamental to the neuronal network complexity and the overall function of the vertebrate brain. In jawed vertebrates, clustered protocadherins provide the molecular basis for this neuronal diversity, through stochastic and combinatorial expression of their various isoforms in individual neurons. Based on analyses of transcriptomes from the Japanese lamprey brain and sea lamprey embryos, genome assemblies of the two lampreys, and brain expressed sequence tags of the inshore hagfish, we show that extant jawless vertebrates (cyclostomes) lack the clustered protocadherins. Our findings indicate that the clustered protocadherins originated from a nonclustered protocadherin in the jawed vertebrate ancestor, after the two rounds of whole-genome duplication. In the absence of clustered protocadherins, cyclostomes might have evolved novel molecules or mechanisms for generating neuronal diversity which remains to be discovered.


Assuntos
Caderinas/genética , Lampreias/anatomia & histologia , Lampreias/genética , Família Multigênica , Animais , Caderinas/química , Ordem dos Genes , Genoma , Humanos , Arcada Osseodentária , Vertebrados
16.
Genome Biol Evol ; 7(11): 3009-21, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26475318

RESUMO

The genes in the Myb superfamily encode for three related transcription factors in most vertebrates, A-, B-, and c-Myb, with functionally distinct roles, whereas most invertebrates have a single Myb. B-Myb plays an essential role in cell division and cell cycle progression, c-Myb is involved in hematopoiesis, and A-Myb is involved in spermatogenesis and regulating expression of pachytene PIWI interacting RNAs, a class of small RNAs involved in posttranscriptional gene regulation and the maintenance of reproductive tissues. Comparisons between teleost fish and tetrapods suggest that the emergence and functional divergence of the Myb genes were linked to the two rounds of whole-genome duplication early in vertebrate evolution. We combined phylogenetic, synteny, structural, and gene expression analyses of the Myb paralogs from elephant shark and lampreys with data from 12 bony vertebrates to reconstruct the early evolution of vertebrate Mybs. Phylogenetic and synteny analyses suggest that the elephant shark and Japanese lamprey have copies of the A-, B-, and c-Myb genes, implying their origin could be traced back to the common ancestor of lampreys and gnathostomes. However, structural and gene expression analyses suggest that their functional roles diverged between gnathostomes and cyclostomes. In particular, we did not detect A-Myb expression in testis suggesting that the involvement of A-Myb in the pachytene PIWI interacting RNA pathway is probably a gnathostome-specific innovation. We speculate that the secondary loss of a central domain in lamprey A-Myb underlies the functional differences between the cyclostome and gnathostome A-Myb proteins.


Assuntos
Evolução Biológica , Genes myb/genética , Lampreias/genética , Filogenia , Tubarões/genética , Sintenia , Sequência de Aminoácidos , Animais , Teorema de Bayes , Funções Verossimilhança , Dados de Sequência Molecular , Análise de Sequência de DNA , Vertebrados/genética
17.
PLoS One ; 9(11): e113445, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405766

RESUMO

The cyclostomes (jawless vertebrates), comprising lampreys and hagfishes, are the sister group of jawed vertebrates (gnathostomes) and are hence an important group for the study of vertebrate evolution. In mammals, three Runx genes, Runx1, Runx2 and Runx3, encode transcription factors that are essential for cell proliferation and differentiation in major developmental pathways such as haematopoiesis, skeletogenesis and neurogenesis and are frequently associated with diseases. We describe here the characterization of Runx gene family members from a cyclostome, the Japanese lamprey (Lethenteron japonicum). The Japanese lamprey contains three Runx genes, RunxA, RunxB, and RunxC. However, phylogenetic and synteny analyses suggest that they are not one-to-one orthologs of gnathostome Runx1, Runx2 and Runx3. The major protein domains and motifs found in gnathostome Runx proteins are highly conserved in the lamprey Runx proteins. Although all gnathostome Runx genes each contain two alternative promoters, P1 (distal) and P2 (proximal), only lamprey RunxB possesses the alternative promoters; lamprey RunxA and RunxC contain only P2 and P1 promoter, respectively. Furthermore, the three lamprey Runx genes give rise to fewer alternative isoforms than the three gnathostome Runx genes. The promoters of the lamprey Runx genes lack the tandem Runx-binding motifs that are highly conserved among the P1 promoters of gnathostome Runx1, Runx2 and Runx3 genes; instead these promoters contain dispersed single Runx-binding motifs. The 3'UTR of lamprey RunxB contains binding sites for miR-27 and miR-130b/301ab, which are conserved in mammalian Runx1 and Runx3, respectively. Overall, the Runx genes in lamprey seem to have experienced a different evolutionary trajectory from that of gnathostome Runx genes which are highly conserved all the way from cartilaginous fishes to mammals.


Assuntos
Subunidades alfa de Fatores de Ligação ao Core/genética , Proteínas de Peixes/genética , Família Multigênica , Petromyzon/genética , Regiões 3' não Traduzidas/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Subunidades alfa de Fatores de Ligação ao Core/classificação , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Evolução Molecular , Éxons/genética , Feminino , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Íntrons/genética , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Petromyzon/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
18.
PLoS One ; 9(4): e93816, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699678

RESUMO

The Runx family genes encode transcription factors that play key roles in hematopoiesis, skeletogenesis and neurogenesis and are often implicated in diseases. We describe here the cloning and characterization of Runx1, Runx2, Runx3 and Runxb genes in the elephant shark (Callorhinchus milii), a member of Chondrichthyes, the oldest living group of jawed vertebrates. Through the use of alternative promoters and/or alternative splicing, each of the elephant shark Runx genes expresses multiple isoforms similar to their orthologs in human and other bony vertebrates. The expression profiles of elephant shark Runx genes are similar to those of mammalian Runx genes. The syntenic blocks of genes at the elephant shark Runx gene loci are highly conserved in human, but represented by shorter conserved blocks in zebrafish indicating a higher degree of rearrangements in this teleost fish. Analysis of promoter regions revealed conservation of binding sites for transcription factors, including two tandem binding sites for Runx that are totally conserved in the distal promoter regions of elephant shark Runx1-3. Several conserved noncoding elements (CNEs), which are putative cis-regulatory elements, and miRNA binding sites were identified in the elephant shark and human Runx gene loci. Some of these CNEs and miRNA binding sites are absent in teleost fishes such as zebrafish and fugu. In summary, our analysis reveals that the genomic organization and expression profiles of Runx genes were already complex in the common ancestor of jawed vertebrates.


Assuntos
Subunidades alfa de Fatores de Ligação ao Core/genética , Tubarões/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Evolução Molecular , Genoma , Humanos , Regiões Promotoras Genéticas
19.
Nature ; 505(7482): 174-9, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24402279

RESUMO

The emergence of jawed vertebrates (gnathostomes) from jawless vertebrates was accompanied by major morphological and physiological innovations, such as hinged jaws, paired fins and immunoglobulin-based adaptive immunity. Gnathostomes subsequently diverged into two groups, the cartilaginous fishes and the bony vertebrates. Here we report the whole-genome analysis of a cartilaginous fish, the elephant shark (Callorhinchus milii). We find that the C. milii genome is the slowest evolving of all known vertebrates, including the 'living fossil' coelacanth, and features extensive synteny conservation with tetrapod genomes, making it a good model for comparative analyses of gnathostome genomes. Our functional studies suggest that the lack of genes encoding secreted calcium-binding phosphoproteins in cartilaginous fishes explains the absence of bone in their endoskeleton. Furthermore, the adaptive immune system of cartilaginous fishes is unusual: it lacks the canonical CD4 co-receptor and most transcription factors, cytokines and cytokine receptors related to the CD4 lineage, despite the presence of polymorphic major histocompatibility complex class II molecules. It thus presents a new model for understanding the origin of adaptive immunity.


Assuntos
Evolução Molecular , Genoma/genética , Tubarões/genética , Animais , Cálcio/metabolismo , Linhagem da Célula/imunologia , Proteínas de Peixes/classificação , Proteínas de Peixes/genética , Deleção de Genes , Genômica , Imunidade Celular/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Osteogênese/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Estrutura Terciária de Proteína/genética , Tubarões/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Fatores de Tempo , Vertebrados/classificação , Vertebrados/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
20.
Proc Biol Sci ; 281(1775): 20132669, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24307675

RESUMO

The stomach, a hallmark of gnathostome evolution, represents a unique anatomical innovation characterized by the presence of acid- and pepsin-secreting glands. However, the occurrence of these glands in gnathostome species is not universal; in the nineteenth century the French zoologist Cuvier first noted that some teleosts lacked a stomach. Strikingly, Holocephali (chimaeras), dipnoids (lungfish) and monotremes (egg-laying mammals) also lack acid secretion and a gastric cellular phenotype. Here, we test the hypothesis that loss of the gastric phenotype is correlated with the loss of key gastric genes. We investigated species from all the main gnathostome lineages and show the specific contribution of gene loss to the widespread distribution of the agastric condition. We establish that the stomach loss correlates with the persistent and complete absence of the gastric function gene kit--H(+)/K(+)-ATPase (Atp4A and Atp4B) and pepsinogens (Pga, Pgc, Cym)--in the analysed species. We also find that in gastric species the pepsinogen gene complement varies significantly (e.g. two to four in teleosts and tens in some mammals) with multiple events of pseudogenization identified in various lineages. We propose that relaxation of purifying selection in pepsinogen genes and possibly proton pump genes in response to dietary changes led to the numerous independent events of stomach loss in gnathostome history. Significantly, the absence of the gastric genes predicts that reinvention of the stomach in agastric lineages would be highly improbable, in line with Dollo's principle.


Assuntos
Evolução Biológica , ATPase Trocadora de Hidrogênio-Potássio/genética , Estômago/fisiologia , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Galinhas/anatomia & histologia , Galinhas/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Deleção de Genes , Duplicação Gênica , Genoma , ATPase Trocadora de Hidrogênio-Potássio/química , Filogenia , Tubarões/anatomia & histologia , Tubarões/genética , Estômago/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...