Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080587

RESUMO

Polymer smart materials are a broad class of polymeric materials that can change their shapes, mechanical responses, light transmissions, controlled releases, and other functional properties under external stimuli. A good understanding of the aspects controlling various types of shape memory phenomena in shape memory polymers (SMPs), such as polymer structure, stimulus effect and many others, is not only important for the preparation of new SMPs with improved performance, but is also useful for the optimization of the current ones to expand their application field. In the present era, simple understanding of the activation mechanisms, the polymer structure, the effect of the modification of the polymer structure on the activation process using fillers or solvents to develop new reliable SMPs with improved properties, long lifetime, fast response, and the ability to apply them under hard conditions in any environment, is considered to be an important topic. Moreover, good understanding of the activation mechanism of the two-way shape memory effect in SMPs for semi-crystalline polymers and liquid crystalline elastomers is the main key required for future investigations. In this article, the principles of the three basic types of external stimuli (heat, chemicals, light) and their key parameters that affect the efficiency of the SMPs are reviewed in addition to several prospective applications.

2.
Polymers (Basel) ; 14(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890737

RESUMO

In this study, the mechanical and thermophysical properties of carbon fiber-reinforced polyethersulfone are investigated. To enhance the interfacial interaction between carbon fibers and the polymer matrix, the surface modification of carbon fibers by thermal oxidation is conducted. By means of AFM and X-ray spectroscopy, it is determined that surface modification changes the morphology and chemical composition of carbon fibers. It is shown that surface modification dramatically increases the mechanical properties of the composites. Thus, flexural strength and the E-modulus of the composites reinforced with modified fibers reached approximately 962 MPa and 60 GPa, respectively, compared with approximately 600 MPa and 50 GPa for the composites reinforced with the initial ones. The heat deflection temperatures of the composites reinforced with the initial and modified fibers were measured. It is shown that composites reinforced with modified fibers lose their stability at temperatures of about 211 °C, which correlates with the glass transition temperature of the PES matrix. The thermal conductivity of the composites with different fiber content is investigated in two directions: in-plane and transverse to layers of carbon fibers. The obtained composites had a relatively high realization of the thermal conductive properties of carbon fibers, up to 55-60%.

3.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566962

RESUMO

This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor (K1c) were examined. The K1c parameter was obtained using three-point bending tests for specimens with different l/b ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the K1c parameter was drastically reduced from about 5 to 1 MPa·m1/2 and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the K1c values.

4.
Polymers (Basel) ; 14(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160388

RESUMO

The goal of this study was to create a high-filled composite material based on polysulfone using various graphite materials. Composite material based on graphite-filled polysulfone was prepared using a solution method which allows the achievement of a high content of fillers up to 70 wt.%. Alongside the analysis of the morphology and structure, the thermal conductivity and mechanical properties of the composites obtained were studied. Structural analysis shows how the type of filler affects the structure of the composites with the appearance of pores in all samples which also has a noticeable effect on composites' properties. In terms of thermal conductivity, the results show that using natural graphite as a filler gives the best results in thermal conductivity compared to artificial and expanded graphite, with the reduction of thermal conductivity while increasing temperature. Flexural tests show that using artificial graphite as a filler gives the composite material the best mechanical load transfer compared to natural or expanded graphite.

5.
Polymers (Basel) ; 13(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806287

RESUMO

Antifriction hybrid fluorinated ethylene propylene-based composites filled with quasicrystalline Al73Cu11Cr16 powder, polytetrafluoroethylene, synthetic graphite and carbon black were elaborated and investigated. Composite samples were formed by high-energy ball milling of initial powders mixture with subsequent consolidation by injection molding. Thermal, mechanical, and tribological properties of the obtained composites were studied. It was found that composite containing 5 wt.% of Al73Cu11Cr16 quasicrystals and 2 wt.% of nanosized polytetrafluoroethylene has 50 times better wear resistance and a 1.5 times lower coefficient of dry friction comparing with unfilled fluorinated ethylene propylene. Addition of 15 wt.% of synthetic graphite to the above mentioned composition allows to achieve an increase in thermal conductivity in 2.5 times comparing with unfilled fluorinated ethylene propylene, at that this composite kept excellent tribological properties.

6.
Polymers (Basel) ; 13(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668656

RESUMO

The development of modern technology requires the elaboration of new materials with improved operational and technological properties [...].

7.
Polymers (Basel) ; 12(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198175

RESUMO

Thermally stable composites obtained by the low-temperature carbonization of an elastomeric matrix filled with hard dispersed silicon carbide particles were obtained and investigated. Evolution of the microstructure and of mechanical and thermal characteristics of composites during thermal degradation and carbonization processes in a wide range of filling from 0 to 450 parts per hundred rubber was studied. For highly filled composites, the compressive strength values were found to be more than 200 MPa; Young's modulus was more than 15 GPa. The thermal conductivity coefficient of composites was up to 1.6 W/(m·K), and this magnitude varied slightly in the temperature range of 25-300 °C. Coupled with the high thermal stability of the composites, the observed properties make it possible to consider using such composites as strained friction units instead of reinforced polymers.

8.
Polymers (Basel) ; 12(4)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32294997

RESUMO

The effect of thermal treatment of glass fibers (GF) on the mechanical and thermo-mechanical properties of polysulfone (PSU) based composites reinforced with GF was investigated. Flexural and shear tests were used to study the composites' mechanical properties. A dynamic mechanical analysis (DMA) and a heat deflection temperature (HDT) test were used to study the thermo-mechanical properties of composites. The chemical structure of the composites was studied using IR-spectroscopy, and scanning electron microscopy (SEM) was used to illustrate the microstructure of the fracture surface. Three fiber to polymer ratios of initial and preheated GF composites (50/50, 60/40, 70/30 (wt.%)) were studied. The results showed that the mechanical and thermo-mechanical properties improved with an increase in the fiber to polymer ratio. The interfacial adhesion in the preheated composites enhanced as a result of removing the sizing coating during the thermal treatment of GF, which improved the properties of the preheated composites compared with the composites reinforced with initial untreated fibers. The SEM images showed a good distribution of the polymer on the GF surface in the preheated GF composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...