Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 10(3): 300-305, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30891130

RESUMO

We encountered a dilemma in the course of studying a series of antagonists of the G-protein coupled receptor CC chemokine receptor-2 (CCR2): compounds with polar C3 side chains exhibited good ion channel selectivity but poor oral bioavailability, whereas compounds with lipophilic C3 side chains exhibited good oral bioavailability in preclinical species but poor ion channel selectivity. Attempts to solve this through the direct modulation of physicochemical properties failed. However, the installation of a protonation-dependent conformational switching mechanism resolved the problem because it enabled a highly selective and relatively polar molecule to access a small population of a conformer with lower polar surface area and higher membrane permeability. Optimization of the overall properties in this series yielded the CCR2 antagonist BMS-741672 (7), which embodied properties suitable for study in human clinical trials.

2.
J Med Chem ; 62(7): 3228-3250, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30893553

RESUMO

Bruton's tyrosine kinase (BTK), a non-receptor tyrosine kinase, is a member of the Tec family of kinases and is essential for B cell receptor (BCR) mediated signaling. BTK also plays a critical role in the downstream signaling pathways for the Fcγ receptor in monocytes, the Fcε receptor in granulocytes, and the RANK receptor in osteoclasts. As a result, pharmacological inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as rheumatoid arthritis and lupus. This article will outline the evolution of our strategy to identify a covalent, irreversible inhibitor of BTK that has the intrinsic potency, selectivity, and pharmacokinetic properties necessary to provide a rapid rate of inactivation systemically following a very low dose. With excellent in vivo efficacy and a very desirable tolerability profile, 5a (branebrutinib, BMS-986195) has advanced into clinical studies.

3.
ACS Med Chem Lett ; 10(1): 67-73, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30655949

RESUMO

The rationale for the structural and mechanistic basis of a tetrahydroisoquinoline (THIQ) based series of CXCR4 antagonists is presented. Using the previously reported crystal structures which reveal two distinct binding sites of CXCR4 defined as the small molecule (IT1t or minor) binding pocket and peptide (CVX15 or major) binding pocket, we hypothesized our THIQ small molecule series could bind like either molecule in these respective receptor configurations (IT1t versus CVX15 based poses). To this end, a thorough investigation was performed through a combination of receptor mutation studies, medicinal chemistry, biological testing, conformational analysis, and flexible docking. Our findings showed that the CVX15 peptide-based CXCR4 receptor complexes (red pose) were consistently favored over the small molecule IT1t based CXCR4 receptor configurations (blue pose) to correctly explain the computational and mutational studies as well as key structural components of activity for these small molecules.

4.
ACS Med Chem Lett ; 9(11): 1117-1122, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30429955

RESUMO

The multifunctional cytokine TGFß plays a central role in regulating antitumor immunity. It has been postulated that inhibition of TGFß signaling in concert with checkpoint blockade will provide improved and durable immune response against tumors. Herein, we describe a novel series of 4-azaindole TGFß receptor kinase inhibitors with excellent selectivity for TGFß receptor 1 kinase. The combination of compound 3f and an antimouse-PD-1 antibody demonstrated significantly improved antitumor efficacy compared to either treatment alone in a murine tumor model.

5.
Bioorg Med Chem ; 26(5): 1026-1034, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29422332

RESUMO

The TGFß-TGFßR signaling pathway has been reported to play a protective role in the later stages of tumorigenesis via increasing immunosuppressive Treg cells and facilitating the epithelial to mesenchymal transition (EMT). Therefore, inhibition of TGFßR has the potential to enhance antitumor immunity. Herein we disclose the identification and optimization of novel heterobicyclic inhibitors of TGFßRI that demonstrate potent inhibition of SMAD phosphorylation. Application of structure-based drug design to the novel pyrrolotriazine chemotype resulted in improved binding affinity (Ki apparent = 0.14 nM), long residence time (T1/2 > 120 min) and significantly improved potency in the PSMAD cellular assay (IC50 = 24 nM). Several analogs inhibited phosphorylation of SMAD both in vitro and in vivo. Additionally, inhibition of TGFß-stimulated phospho-SMAD was observed in primary human T cells.


Assuntos
Compostos Bicíclicos com Pontes/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Sítios de Ligação , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/farmacologia , Células Cultivadas , Cristalografia por Raios X , Desenho de Drogas , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Serina-Treonina Quinases/metabolismo , Pirróis/síntese química , Pirróis/química , Pirróis/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Smad/metabolismo , Relação Estrutura-Atividade , Linfócitos T/citologia , Linfócitos T/metabolismo , Tiazinas/síntese química , Tiazinas/química , Tiazinas/metabolismo
6.
Bioorg Med Chem Lett ; 27(23): 5267-5271, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29102228

RESUMO

Macrocyclic pyrrolobenzodiazepine dimers were designed and evaluated for use as antibody-drug conjugate payloads. Initial structure-activity exploration established that macrocyclization could increase the potency of PBD dimers compared with non-macrocyclic analogs. Further optimization overcame activity-limiting solubility issues, leading to compounds with highly potent (picomolar) activity against several cancer cell lines. High levels of in vitro potency and specificity were demonstrated with an anti-mesothelin conjugate.


Assuntos
Anticorpos/metabolismo , Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , Compostos Macrocíclicos/farmacologia , Pirróis/farmacologia , Anticorpos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzodiazepinas/síntese química , Benzodiazepinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dimerização , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Estrutura Molecular , Pirróis/síntese química , Pirróis/química , Solubilidade , Relação Estrutura-Atividade
7.
Nature ; 540(7633): 458-461, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27926736

RESUMO

CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer. These disease associations have motivated numerous preclinical studies and clinical trials (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2-chemokine axis. To aid drug discovery efforts, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein-protein interactions, receptor-chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.


Assuntos
Pirrolidinonas/química , Pirrolidinonas/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/química , Sítio Alostérico/efeitos dos fármacos , Sítios de Ligação , Quimiocinas CC/metabolismo , Cristalografia por Raios X , Desenho de Drogas , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Modelos Moleculares
8.
J Med Chem ; 59(17): 7915-35, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27531604

RESUMO

Bruton's tyrosine kinase (BTK) belongs to the TEC family of nonreceptor tyrosine kinases and plays a critical role in multiple cell types responsible for numerous autoimmune diseases. This article will detail the structure-activity relationships (SARs) leading to a novel second generation series of potent and selective reversible carbazole inhibitors of BTK. With an excellent pharmacokinetic profile as well as demonstrated in vivo activity and an acceptable safety profile, 7-(2-hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide 6 (BMS-935177) was selected to advance into clinical development.


Assuntos
Antirreumáticos/química , Carbazóis/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinazolinonas/química , Administração Oral , Tirosina Quinase da Agamaglobulinemia , Animais , Antirreumáticos/síntese química , Antirreumáticos/farmacocinética , Antirreumáticos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Disponibilidade Biológica , Carbazóis/síntese química , Carbazóis/farmacocinética , Carbazóis/farmacologia , Linhagem Celular , Cristalografia por Raios X , Cães , Humanos , Macaca fascicularis , Camundongos , Microssomos Hepáticos/metabolismo , Permeabilidade , Proteínas Tirosina Quinases/química , Quinazolinonas/síntese química , Quinazolinonas/farmacocinética , Quinazolinonas/farmacologia , Relação Estrutura-Atividade
9.
J Med Chem ; 59(13): 6248-64, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27309907

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates a multitude of physiological processes such as lymphocyte trafficking, cardiac function, vascular development, and inflammation. Because of the ability of S1P1 receptor agonists to suppress lymphocyte egress, they have great potential as therapeutic agents in a variety of autoimmune diseases. In this article, the discovery of selective, direct acting S1P1 agonists utilizing an ethanolamine scaffold containing a terminal carboxylic acid is described. Potent S1P1 agonists such as compounds 18a and 19a which have greater than 1000-fold selectivity over S1P3 are described. These compounds efficiently reduce blood lymphocyte counts in rats through 24 h after single doses of 1 and 0.3 mpk, respectively. Pharmacodynamic properties of both compounds are discussed. Compound 19a was further studied in two preclinical models of disease, exhibiting good efficacy in both the rat adjuvant arthritis model (AA) and the mouse experimental autoimmune encephalomyelitis model (EAE).


Assuntos
Etanolamina/química , Etanolamina/farmacologia , Linfócitos/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/agonistas , Animais , Artrite/tratamento farmacológico , Cães , Encefalomielite Autoimune Experimental/tratamento farmacológico , Etanolamina/farmacocinética , Etanolamina/uso terapêutico , Feminino , Haplorrinos , Humanos , Contagem de Linfócitos , Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos Lew , Receptores de Lisoesfingolipídeo/metabolismo , Relação Estrutura-Atividade
10.
Acta Crystallogr D Struct Biol ; 72(Pt 5): 658-74, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27139629

RESUMO

The cytokine TGF-ß modulates a number of cellular activities and plays a critical role in development, hemostasis and physiology, as well as in diseases including cancer and fibrosis. TGF-ß signals through two transmembrane serine/threonine kinase receptors: TGFßR1 and TGFßR2. Multiple structures of the TGFßR1 kinase domain are known, but the structure of TGFßR2 remains unreported. Wild-type TGFßR2 kinase domain was refractory to crystallization, leading to the design of two mutated constructs: firstly, a TGFßR1 chimeric protein with seven ATP-site residues mutated to their counterparts in TGFßR2, and secondly, a reduction of surface entropy through mutation of six charged residues on the surface of the TGFßR2 kinase domain to alanines. These yielded apo and inhibitor-bound crystals that diffracted to high resolution (<2 Å). Comparison of these structures with those of TGFßR1 reveal shared ligand contacts as well as differences in the ATP-binding sites, suggesting strategies for the design of pan and selective TGFßR inhibitors.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
11.
ACS Med Chem Lett ; 7(1): 40-5, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26819663

RESUMO

Efforts to identify a potent, reversible, nonsteroidal CYP17A1 lyase inhibitor with good selectivity over CYP17A1 hydroxylase and CYPs 11B1 and 21A2 for the treatment of castration-resistant prostate cancer (CRPC) culminated in the discovery of BMS-351 (compound 18), a pyridyl biaryl benzimidazole with an excellent in vivo profile. Biological evaluation of BMS-351 at a dose of 1.5 mg in castrated cynomolgus monkeys revealed a remarkable reduction in testosterone levels with minimal glucocorticoid and mineralcorticoid perturbation. Based on a favorable profile, BMS-351 was selected as a candidate for further preclinical evaluation.

13.
ACS Med Chem Lett ; 6(5): 523-7, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005526

RESUMO

Structure-activity relationships in a series of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides identified highly potent inhibitors of γ-secretase mediated signaling of Notch1/2/3/4 receptors. On the basis of its robust in vivo efficacy at tolerated doses in Notch driven leukemia and solid tumor xenograft models, 12 (BMS-906024) was selected as a candidate for clinical evaluation.

14.
ACS Med Chem Lett ; 6(4): 439-44, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25893046

RESUMO

We describe the hybridization of our previously reported acyclic and cyclic CC chemokine receptor 2 (CCR2) antagonists to lead to a new series of dual antagonists of CCR2 and CCR5. Installation of a γ-lactam as the spacer group and a quinazoline as a benzamide mimetic improved oral bioavailability markedly. These efforts led to the identification of 13d, a potent and orally bioavailable dual antagonist suitable for use in both murine and monkey models of inflammation.

15.
J Mol Biol ; 427(4): 924-942, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25579995

RESUMO

The human pregnane X receptor (PXR) is a promiscuous nuclear receptor that functions as a sensor to a wide variety of xenobiotics and regulates expression of several drug metabolizing enzymes and transporters. We have generated "Adnectins", derived from 10th fibronectin type III domain ((10)Fn3), that target the PXR ligand binding domain (LBD) interactions with the steroid receptor co-activator-1 (SRC-1) peptide, displacing SRC-1 binding. Adnectins are structurally homologous to the immunoglobulin superfamily. Three different co-crystal structures of PXR LBD with Adnectin-1 and CCR1 (CC chemokine receptor-1) antagonist Compound-1 were determined. This structural information was used to modulate PXR affinity for a related CCR1 antagonist compound that entered into clinical trials for rheumatoid arthritis. The structures of PXR with Adnectin-1 reveal specificity of Adnectin-1 in not only targeting the interface of the SRC-1 interactions but also engaging the same set of residues that are involved in binding of SRC-1 to PXR. Substituting SRC-1 with Adnectin-1 does not alter the binding conformation of Compound-1 in the ligand binding pocket. The structure also reveals the possibility of using Adnectins as crystallization chaperones to generate structures of PXR with compounds of interest.


Assuntos
Coativador 1 de Receptor Nuclear/química , Receptores CCR1/antagonistas & inibidores , Receptores de Esteroides/química , Ureia/análogos & derivados , Valina/análogos & derivados , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Lignanas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Receptor de Pregnano X , Ligação Proteica , Estrutura Terciária de Proteína , Receptores CCR1/metabolismo , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície , Ureia/química , Ureia/metabolismo , Ureia/farmacologia , Valina/química , Valina/metabolismo , Valina/farmacologia
16.
Exp Cell Res ; 332(2): 267-77, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25486070

RESUMO

Cancer cell survival is frequently dependent on the elevated levels of members of the Bcl-2 family of prosurvival proteins that bind to and inactivate BH3-domain pro-apoptotic cellular proteins. Small molecules that inhibit the protein-protein interactions between prosurvival and proapoptotic Bcl-2 family members (so-called "BH3 mimetics") have a potential therapeutic value, as indicated by clinical findings obtained with ABT-263 (navitoclax), a Bcl-2/Bcl-xL antagonist, and more recently with GDC-0199/ABT-199, a more selective antagonist of Bcl-2. Here, we report study results of the functional role of the prosurvival protein Mcl-1 against a panel of solid cancer cell lines representative of different tumor types. We observed silencing of Mcl-1 expression by small interfering RNAs (siRNAs) significantly reduced viability and induced apoptosis in almost 30% of cell lines tested, including lung and breast adenocarcinoma, as well as glioblastoma derived lines. Most importantly, we provide a mechanistic basis for this sensitivity by showing antagonism of Mcl-1 function with specific BH3 peptides against isolated mitochondria induces Bak oligomerization and cytochrome c release, therefore demonstrating that mitochondria from Mcl-1-sensitive cells depend on Mcl-1 for their integrity and that antagonizing Mcl-1 function is sufficient to induce apoptosis. Thus, our results lend further support for considering Mcl-1 as a therapeutic target in a number of solid cancers and support the rationale for development of small molecule BH3-mimetics antagonists of this protein.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
17.
Nat Struct Mol Biol ; 22(1): 37-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437913

RESUMO

Reported RAF kinase domain structures adopt a side-to-side dimer configuration reflective of an 'on' state that underpins an allosteric mechanism of regulation. Atomic details of the monomer 'off' state have been elusive. Reinspection of the BRAF kinase domain structures revealed that sulfonamide inhibitors induce features of an off state, primarily a laterally displaced helix αC stabilized by the activation segment helix 1 (AS-H1). These features correlated with the ability of sulfonamides to disrupt human BRAF homodimers in cells, in vitro and in crystals yielding a structure of BRAF in a monomer state. The crystal structure revealed exaggerated, nonproductive positions of helix αC and AS-H1, the latter of which is the target of potent BRAF oncogenic mutations. Together, this work provides formal proof of an allosteric link between the RAF dimer interface, the activation segment and the catalytic infrastructure.


Assuntos
Regulação Alostérica , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Humanos , Ligação Proteica , Conformação Proteica , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/metabolismo
18.
J Chem Inf Model ; 54(10): 2680-96, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25233464

RESUMO

Sampling low energy conformations of macrocycles is challenging due to the large size of many of these molecules and the constraints imposed by the macrocycle. We present a new conformational search method (implemented in MacroModel) that uses brief MD simulations followed by minimization and normal-mode search steps. The method was parametrized using a set of 100 macrocycles from the PDB and CSD. It was then tested on a publicly available data set for which there are published results using alternative methods; we found that when the same force field is used (in this case MMFFs in vacuum), our method tended to identify conformations with lower energies than what the other methods identified. The performance on a new set of 50 macrocycles from the PDB and CSD was also quite good; the mean and median RMSD values for just the ring atoms were 0.60 and 0.33 Å, respectively. However, the RMSD values for macrocycles with more than 30 ring-atoms were quite a bit larger compared to the smaller macrocycles. Possible origins for this and ideas for improving the performance on very large macrocycles are discussed.


Assuntos
Ciclodextrinas/química , Peptídeos Cíclicos/química , Peptídeos/química , Software , Algoritmos , Conformação Molecular , Simulação de Dinâmica Molecular , Proteínas/química , Termodinâmica
19.
J Med Chem ; 57(18): 7550-64, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25101488
20.
Bioorg Med Chem Lett ; 24(9): 2206-11, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24685542

RESUMO

Investigation of various heterocyclic core isosteres of imidazopyrazines 1 & 2 yielded purine derivatives 3 & 8 as potent and selective BTK inhibitors. Subsequent SAR studies of the purine series led to the discovery of 20 as a leading compound. Compound 20 is very selective when screened against a panel of 400 kinases and is a potent inhibitor in cellular assays of human B cell function including B-Cell proliferation and CD86 cell surface expression and exhibited in vivo efficacy in a mouse PCA model. Its X-ray co-crystal structure with BTK shows that the high selectivity is gained from filling a BTK specific lipophilic pocket. However, physical and ADME properties leading to low oral exposure hindered further development.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Purinas/química , Purinas/farmacologia , Tirosina Quinase da Agamaglobulinemia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/enzimologia , Linfócitos B/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA