Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtros adicionais

Intervalo de ano
FEBS J ; 284(23): 4051-4065, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28986969


Non-canonical four-stranded G-quadruplex (G4) DNA structures can form in G-rich sequences that are widely distributed throughout the genome. The presence of G4 structures can impair DNA replication by hindering the progress of replicative polymerases (Pols), and failure to resolve these structures can lead to genetic instability. In the present study, we combined different approaches to address the question of whether and how Escherichia coli Pol I resolves G4 obstacles during DNA replication and/or repair. We found that E. coli Pol I-catalyzed DNA synthesis could be arrested by G4 structures at low protein concentrations and the degree of inhibition was strongly dependent on the stability of the G4 structures. Interestingly, at high protein concentrations, E. coli Pol I was able to overcome some kinds of G4 obstacles without the involvement of other molecules and could achieve complete replication of G4 DNA. Mechanistic studies suggested that multiple Pol I proteins might be implicated in G4 unfolding, and the disruption of G4 structures requires energy derived from dNTP hydrolysis. The present work not only reveals an unrealized function of E. coli Pol I, but also presents a possible mechanism by which G4 structures can be resolved during DNA replication and/or repair in E. coli.

DNA Polimerase I/metabolismo , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Quadruplex G , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico
Nucleic Acids Res ; 45(19): 11401-11412, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977514


G-quadruplex (G4) can be formed by G-rich DNA sequences that are widely distributed throughout the human genome. Although G-triplex and G-hairpin have been proposed as G4 folding intermediates, their formation still requires further investigation by experiments. Here, we employed single-molecule FRET to characterize the folding dynamics of G4 from human telomeric sequence. First, we observed four states during G4 folding initially assigned to be anti-parallel G4, G-triplex, G-hairpin and unfolded ssDNA. Then we constructed putative intra-strand G-triplex, G-hairpin structures and confirmed their existences in both NaCl and KCl. Further studies revealed those structures are going through dynamic transitions between different states and show relatively weak dependence on cations, unlike G4. Based on those results and molecular dynamics simulations, we proposed a multi-pathway folding mechanism for human telomeric G4. The present work may shed new light on our current understanding about the existence and stability of G4 intermediate states.

DNA/química , Quadruplex G , Conformação de Ácido Nucleico , Telômero/genética , DNA/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Transdução de Sinais/genética