Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Cell Metab ; 30(4): 609-613, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31477497


Hess et al. quantified circulating aldehyde dehydrogenase-expressing (ALDHhi) cell subsets in people with T2DM given either empagliflozin (EMPA) or placebo. EMPA treatment increased circulating pro-angiogenic CD133+ progenitor cells, decreased pro-inflammatory ALDHhi granulocyte precursors, and increased ALDHhi monocytes with M2 polarization. EMPA treatment improved T2DM-associated "regenerative cell depletion" contributing to enhanced vascular health.

Trends Mol Med ; 25(7): 640-655, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31053416


Ischemic cardiovascular complications remain a major cause of mortality in people with type 2 diabetes (T2D). Individuals with T2D may have a reduced ability to revascularize ischemic tissues due to abnormal production of circulating provascular progenitor cells. This 'regenerative cell exhaustion' process is intensified by increasing oxidative stress and inflammation and during T2D progression. Chronic exhaustion may be mediated by changes in the bone marrow microenvironment that dysregulate the wingless related integration site network, a central pathway maintaining the progenitor cell pool. Restoration of vascular regenerative cell production by reducing glucotoxicity with contemporary antihyperglycemic agents, by reducing systemic inflammation postbariatric surgery, or by modulating progenitor cell provascular functions using exosomal manipulation, may provide unique approaches for mitigating ischemic disease.

JACC Basic Transl Sci ; 4(1): 98-112, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847424


Detection of vascular regenerative cell exhaustion is required to combat ischemic complications during type 2 diabetes mellitus (T2D). We used high aldehyde dehydrogenase (ALDH) activity and surface marker co-expression to develop a high-throughput flow cytometry-based assay to quantify circulating proangiogenic and proinflammatory cell content in the peripheral blood of individuals with T2D. Circulating proangiogenic monocytes expressing anti-inflammatory M2 markers were decreased in patients with T2D. Individuals with longer duration of T2D exhibited reduced frequencies of circulating proangiogenic ALDHhiCD34+ progenitor cells with primitive (CD133) and migratory (CXCR4) phenotypes. This approach consistently detected increased inflammatory cell burden and decreased provascular progenitor content in individuals with T2D.

Stem Cells ; 36(2): 161-171, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29226477


Critical limb ischemia (CLI), the most severe form of peripheral artery disease, is characterized by pain at rest and non-healing ulcers in the lower extremities. For patients with CLI, where the extent of atherosclerotic artery occlusion is too severe for surgical bypass or percutaneous interventions, limb amputation remains the only treatment option. Thus, cell-based therapy to restore perfusion and promote wound healing in patients with CLI is under intense investigation. Despite promising preclinical studies in animal models, transplantation of bone marrow (BM)-derived cell populations in patients with CLI has shown limited benefit preventing limb amputation. Early trials injected heterogenous mononuclear cells containing a low frequency of cells with pro-vascular regenerative functions. Most trials transferred autologous cells damaged by chronic disease that demonstrated poor survival in the ischemic environment and impaired function conferred by atherosclerotic or diabetic co-morbidities. Finally, recent preclinical studies suggest optimized blood vessel formation may require paracrine and/or structural contributions from multiple progenitor cell lineages, angiocrine-secretory myeloid cells derived from hematopoietic progenitor cells, tubule-forming endothelial cells generated by circulating or vessel-resident endothelial precursors, and vessel-stabilizing perivascular cells derived from mesenchymal stem cells. Understanding how stem cells co-ordinate the myriad of cells and signals required for stable revascularization remains the key to translating the potential of stem cells into curative therapies for CLI. Thus, combination delivery of multiple cell types within supportive bioengineered matricies may represent a new direction to improve cell therapy strategies for CLI. Stem Cells 2018;36:161-171.

Terapia Baseada em Transplante de Células e Tecidos/métodos , Extremidades/patologia , Isquemia/terapia , Animais , Transplante de Medula Óssea , Humanos , Doença Arterial Periférica/terapia , Cicatrização