Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Am J Hum Genet ; 105(5): 1040-1047, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630789


Variants in genes encoding ribosomal proteins have thus far been associated with Diamond-Blackfan anemia, a rare inherited bone marrow failure, and isolated congenital asplenia. Here, we report one de novo missense variant and three de novo splice variants in RPL13, which encodes ribosomal protein RPL13 (also called eL13), in four unrelated individuals with a rare bone dysplasia causing severe short stature. The three splice variants (c.477+1G>T, c.477+1G>A, and c.477+2 T>C) result in partial intron retention, which leads to an 18-amino acid insertion. In contrast to observations from Diamond-Blackfan anemia, we detected no evidence of significant pre-rRNA processing disturbance in cells derived from two affected individuals. Consistently, we showed that the insertion-containing protein is stably expressed and incorporated into 60S subunits similar to the wild-type protein. Erythroid proliferation in culture and ribosome profile on sucrose gradient are modified, suggesting a change in translation dynamics. We also provide evidence that RPL13 is present at high levels in chondrocytes and osteoblasts in mouse growth plates. Taken together, we show that the identified RPL13 variants cause a human ribosomopathy defined by a rare skeletal dysplasia, and we highlight the role of this ribosomal protein in bone development.

Sci Rep ; 9(1): 479, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679741


Ni-based catalysts have been considered as an efficient anode material for urea fuel cells due to the low cost and high activity in alkaline media. Herein, we demonstrate that Ni-Co bimetallic nanoparticles decorated carbon nanotube aerogels as catalysts for urea oxidation reaction (UOR) can be synthesized by a polyol reduction and sol-gel method. The morphology, structure, and composition of the Ni-Co/MWCNT aerogels were characterized by scanning electron microscopy and X-Ray diffraction. The electro-catalytic activity of the Ni-Co/MWCNT aerogels towards UOR was investigated using cyclic voltammetry. It was found that the Co-doping at 25% (Co/Ni) significantly increased the oxidation peak current and reduced the overpotential of the UOR. Furthermore, the MWCNT aerogel support also remarkably enhanced electro-catalytic activity by providing a high surface area and fast mass transport for the UOR owing to the porous 3D network structures with uniform distribution of Ni-Co nanoparticles. Urea/O2 fuel cell with Ni-Co/MWCNT aerogel as anode material exhibited an excellent performance with maximum power density of 17.5 mWcm-2 with an open circuit voltage of 0.9 V. Thus, this work showed that the highly porous three-dimensional Ni-Co/MWCNT aerogel catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.