Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Thyroid ; 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34847795

RESUMO

Background: Observational studies suggest an association between thyroid function and risk of dementia, but the causality and direction of these effects are unclear. We aim to test whether genetically predicted variation within the normal range of thyroid function and hypothyroidism is causally associated with the risk of Alzheimer's disease (AD). Methods: Mendelian randomization (MR) analyses using genetic instruments are associated with normal range thyrotropin (TSH) and free thyroxine (fT4) levels. Secondary analyses included investigation of the role of hypothyroidism. Bidirectional MR was conducted to address the presence of a potential reverse causal association. Summary statistics were obtained from the ThyroidOmics Consortium involving up to 119,715 individuals and the latest AD genome-wide association study data including up to 71,880 cases. Results: MR analyses show an association between increased genetically predicted normal range TSH levels and a decreased risk of AD (p = 0.02). One standard deviation increased normal range TSH levels were associated with a decreased risk of AD in individuals younger than 50 years old (p = 0.04). There was no evidence for a causal association between fT4 (p = 0.54) and AD. We did not identify any effect of the genetically predicted full range TSH levels (p = 0.06) or hypothyroidism (p = 0.23) with AD. Bidirectional MR did not show any effect of genetic predisposition to AD on TSH or fT4 levels. Conclusions: This MR study shows that increased levels of genetically predicted TSH within the normal range and in younger individuals are associated with a decreased risk of AD. We observed a marginal association between genetically predicted full range TSH and AD risk. There was no evidence for an effect between genetically predicted fT4 or hypothyroidism on AD. Future studies should clarify the underlying pathophysiological mechanisms.

2.
Clin Chem ; 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922334

RESUMO

BACKGROUND: Obesity and type 2 diabetes (T2D) are correlated risk factors for chronic kidney disease (CKD). METHODS: Using summary data from GIANT (Genetic Investigation of Anthropometric Traits), DIAGRAM (DIAbetes Genetics Replication And Meta-analysis), and CKDGen (CKD Genetics), we examined causality and directionality of the association between obesity and kidney function. Bidirectional 2-sample Mendelian randomization (MR) estimated the total causal effects of body mass index (BMI) and waist-to-hip ratio (WHR) on kidney function, and vice versa. Effects of adverse obesity and T2D were examined by stratifying BMI variants by their association with WHR and T2D. Multivariable MR estimated the direct causal effects of BMI and WHR on kidney function. The inverse variance weighted random-effects MR for Europeans was the main analysis, accompanied by several sensitivity MR analyses. RESULTS: One standard deviation (SD ≈ 4.8 kg/m2) genetically higher BMI was associated with decreased estimated glomerular filtration rate (eGFR) [ß=-0.032 (95% confidence intervals: -0.036, -0.027) log[eGFR], P = 1 × 10-43], increased blood urea nitrogen (BUN) [ß = 0.010 (0.005, 0.015) log[BUN], P = 3 × 10-6], increased urinary albumin-to-creatinine ratio [ß = 0.199 (0.067, 0.332) log[urinary albumin-to-creatinine ratio (UACR)], P = 0.003] in individuals with diabetes, and increased risk of microalbuminuria [odds ratios (OR) = 1.15 [1.04-1.28], P = 0.009] and CKD [1.13 (1.07-1.19), P = 3 × 10-6]. Corresponding estimates for WHR and for trans-ethnic populations were overall similar. The associations were driven by adverse obesity, and for microalbuminuria additionally by T2D. While genetically high BMI, unlike WHR, was directly associated with eGFR, BUN, and CKD, the pathway to albuminuria was likely through T2D. Genetically predicted kidney function was not associated with BMI or WHR. CONCLUSIONS: Genetically high BMI is associated with impaired kidney function, driven by adverse obesity, and for albuminuria additionally by T2D.

4.
Mol Psychiatry ; 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782712

RESUMO

Major Depressive Disorder (MDD) often is associated with significant cognitive dysfunction. We conducted a meta-analysis of genome-wide interaction of MDD and cognitive function using data from four large European cohorts in a total of 3510 MDD cases and 6057 controls. In addition, we conducted analyses using polygenic risk scores (PRS) based on data from the Psychiatric Genomics Consortium (PGC) on the traits of MDD, Bipolar disorder (BD), Schizophrenia (SCZ), and mood instability (MIN). Functional exploration contained gene expression analyses and Ingenuity Pathway Analysis (IPA®). We identified a set of significantly interacting single nucleotide polymorphisms (SNPs) between MDD and the genome-wide association study (GWAS) of cognitive domains of executive function, processing speed, and global cognition. Several of these SNPs are located in genes expressed in brain, with important roles such as neuronal development (REST), oligodendrocyte maturation (TNFRSF21), and myelination (ARFGEF1). IPA® identified a set of core genes from our dataset that mapped to a wide range of canonical pathways and biological functions (MPO, FOXO1, PDE3A, TSLP, NLRP9, ADAMTS5, ROBO1, REST). Furthermore, IPA® identified upstream regulator molecules and causal networks impacting on the expression of dataset genes, providing a genetic basis for further clinical exploration (vitamin D receptor, beta-estradiol, tadalafil). PRS of MIN and meta-PRS of MDD, MIN and SCZ were significantly associated with all cognitive domains. Our results suggest several genes involved in physiological processes for the development and maintenance of cognition in MDD, as well as potential novel therapeutic agents that could be explored in patients with MDD associated cognitive dysfunction.

5.
Clin Epigenetics ; 13(1): 198, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702360

RESUMO

BACKGROUND: Information on long-term alcohol consumption is relevant for medical and public health research, disease therapy, and other areas. Recently, DNA methylation-based inference of alcohol consumption from blood was reported with high accuracy, but these results were based on employing the same dataset for model training and testing, which can lead to accuracy overestimation. Moreover, only subsets of alcohol consumption categories were used, which makes it impossible to extrapolate such models to the general population. By using data from eight population-based European cohorts (N = 4677), we internally and externally validated the previously reported biomarkers and models for epigenetic inference of alcohol consumption from blood and developed new models comprising all data from all categories. RESULTS: By employing data from six European cohorts (N = 2883), we empirically tested the reproducibility of the previously suggested biomarkers and prediction models via ten-fold internal cross-validation. In contrast to previous findings, all seven models based on 144-CpGs yielded lower mean AUCs compared to the models with less CpGs. For instance, the 144-CpG heavy versus non-drinkers model gave an AUC of 0.78 ± 0.06, while the 5 and 23 CpG models achieved 0.83 ± 0.05, respectively. The transportability of the models was empirically tested via external validation in three independent European cohorts (N = 1794), revealing high AUC variance between datasets within models. For instance, the 144-CpG heavy versus non-drinkers model yielded AUCs ranging from 0.60 to 0.84 between datasets. The newly developed models that considered data from all categories showed low AUCs but gave low AUC variation in the external validation. For instance, the 144-CpG heavy and at-risk versus light and non-drinkers model achieved AUCs of 0.67 ± 0.02 in the internal cross-validation and 0.61-0.66 in the external validation datasets. CONCLUSIONS: The outcomes of our internal and external validation demonstrate that the previously reported prediction models suffer from both overfitting and accuracy overestimation. Our results show that the previously proposed biomarkers are not yet sufficient for accurate and robust inference of alcohol consumption from blood. Overall, our findings imply that DNA methylation prediction biomarkers and models need to be improved considerably before epigenetic inference of alcohol consumption from blood can be considered for practical applications.

6.
Cancer Epidemiol Biomarkers Prev ; 30(12): 2207-2216, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34583967

RESUMO

BACKGROUND: Circulating lipids and insulin-like growth factor 1 (IGF-I) have been reliably associated with breast cancer. Observational studies suggest an interplay between lipids and IGF-I, however, whether these relationships are causal and if pathways from these phenotypes to breast cancer overlap is unclear. METHODS: Mendelian randomization (MR) was conducted to estimate the relationship between lipids or IGF-I and breast cancer risk using genetic summary statistics for lipids (low-density lipoprotein cholesterol, LDL-C; high-density lipoprotein cholesterol, HDL-C; triglycerides, TGs), IGF-I and breast cancer from GLGC/UKBB (N = 239,119), CHARGE/UKBB (N = 252,547), and Breast Cancer Association Consortium (N = 247,173), respectively. Cross-sectional observational and MR analyses were conducted to assess the bi-directional relationship between lipids and IGF-I in SHIP (N = 3,812) and UKBB (N = 422,389), and using genetic summary statistics from GLGC (N = 188,577) and CHARGE/UKBB (N = 469,872). RESULTS: In multivariable MR (MVMR) analyses, the OR for breast cancer per 1-SD increase in HDL-C and TG was 1.08 [95% confidence interval (CI), 1.04-1.13] and 0.94 (95% CI, 0.89-0.98), respectively. The OR for breast cancer per 1-SD increase in IGF-I was 1.09 (95% CI, 1.04-1.15). MR analyses suggested a bi-directional TG-IGF-I relationship (TG-IGF-I ß per 1-SD: -0.13; 95% CI, -0.23 to -0.04; and IGF-I-TG ß per 1-SD: -0.11; 95% CI, -0.18 to -0.05). There was little evidence for a causal relationship between HDL-C and LDL-C with IGF-I. In MVMR analyses, associations of TG or IGF-I with breast cancer were robust to adjustment for IGF-I or TG, respectively. CONCLUSIONS: Our findings suggest a causal role of HDL-C, TG, and IGF-I in breast cancer. Observational and MR analyses support an interplay between IGF-I and TG; however, MVMR estimates suggest that TG and IGF-I may act independently to influence breast cancer. IMPACT: Our findings should be considered in the development of prevention strategies for breast cancer, where interventions are known to modify circulating lipids and IGF-I.

7.
Nat Commun ; 12(1): 5647, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561431

RESUMO

Comparing transcript levels between healthy and diseased individuals allows the identification of differentially expressed genes, which may be causes, consequences or mere correlates of the disease under scrutiny. We propose a method to decompose the observational correlation between gene expression and phenotypes driven by confounders, forward- and reverse causal effects. The bi-directional causal effects between gene expression and complex traits are obtained by Mendelian Randomization integrating summary-level data from GWAS and whole-blood eQTLs. Applying this approach to complex traits reveals that forward effects have negligible contribution. For example, BMI- and triglycerides-gene expression correlation coefficients robustly correlate with trait-to-expression causal effects (rBMI = 0.11, PBMI = 2.0 × 10-51 and rTG = 0.13, PTG = 1.1 × 10-68), but not detectably with expression-to-trait effects. Our results demonstrate that studies comparing the transcriptome of diseased and healthy subjects are more prone to reveal disease-induced gene expression changes rather than disease causing ones.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Transcriptoma/genética , Causalidade , Estudos de Associação Genética/métodos , Humanos , Análise da Randomização Mendeliana/métodos , Fenótipo , Locos de Características Quantitativas/genética
8.
Nat Genet ; 53(9): 1300-1310, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475573

RESUMO

Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes.


Assuntos
Proteínas Sanguíneas/genética , Regulação da Expressão Gênica/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
10.
Thyroid ; 31(9): 1305-1315, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34210154

RESUMO

Background: Untreated hypothyroidism is associated with acquired von Willebrand syndrome, and hyperthyroidism is associated with increased thrombosis risk. However, the causal effects of thyroid function on hemostasis, coagulation, and fibrinolysis are unknown. Methods: In a two-sample Mendelian randomization (MR) study with genome-wide association variants, we assessed causality of genetically predicted hypothyroidism (N = 134,641), normal-range thyrotropin (TSH; N = 54,288) and free thyroxine (fT4) (N = 49,269), hyperthyroidism (N = 51,823), and thyroid peroxidase antibody positivity (N = 25,821) on coagulation (activated partial thromboplastin time, von Willebrand factor [VWF], factor VIII [FVIII], prothrombin time, factor VII, fibrinogen) and fibrinolysis (D-dimer, tissue plasminogen activator [TPA], plasminogen activator inhibitor-1) from the CHARGE Hemostasis Consortium (N = 2583-120,246). Inverse-variance-weighted random effects were the main MR analysis followed by sensitivity analyses. Two-sided p < 0.05 was nominally significant, and p < 0.0011[ = 0.05/(5 exposures × 9 outcomes)] was Bonferroni significant for the main MR analysis. Results: Genetically increased TSH was associated with decreased VWF [ß(SE) = -0.020(0.006), p = 0.001] and with decreased fibrinogen [ß(SE) = -0.008(0.002), p = 0.001]. Genetically increased fT4 was associated with increased VWF [ß(SE) = 0.028(0.011), p = 0.012]. Genetically predicted hyperthyroidism was associated with increased VWF [ß(SE) = 0.012(0.004), p = 0.006] and increased FVIII [ß(SE) = 0.013(0.005), p = 0.007]. Genetically predicted hypothyroidism and hyperthyroidism were associated with decreased TPA [ß(SE) = -0.009(0.024), p = 0.024] and increased TPA [ß(SE) = 0.022(0.008), p = 0.008], respectively. MR sensitivity analyses showed similar direction but lower precision. Other coagulation and fibrinolytic factors were inconclusive. Conclusions: In the largest genetic studies currently available, genetically increased TSH and fT4 may be associated with decreased and increased synthesis of VWF, respectively. Since Bonferroni correction may be too conservative given the correlation between the analyzed traits, we cannot reject nominal associations of thyroid traits with coagulation or fibrinolytic factors.

11.
Eur J Epidemiol ; 36(11): 1143-1155, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091768

RESUMO

Common carotid intima-media thickness (cIMT) is an index of subclinical atherosclerosis that is associated with ischemic stroke and coronary artery disease (CAD). We undertook a cross-sectional epigenome-wide association study (EWAS) of measures of cIMT in 6400 individuals. Mendelian randomization analysis was applied to investigate the potential causal role of DNA methylation in the link between atherosclerotic cardiovascular risk factors and cIMT or clinical cardiovascular disease. The CpG site cg05575921 was associated with cIMT (beta = -0.0264, p value = 3.5 × 10-8) in the discovery panel and was replicated in replication panel (beta = -0.07, p value = 0.005). This CpG is located at chr5:81649347 in the intron 3 of the aryl hydrocarbon receptor repressor gene (AHRR). Our results indicate that DNA methylation at cg05575921 might be in the pathway between smoking, cIMT and stroke. Moreover, in a region-based analysis, 34 differentially methylated regions (DMRs) were identified of which a DMR upstream of ALOX12 showed the strongest association with cIMT (p value = 1.4 × 10-13). In conclusion, our study suggests that DNA methylation may play a role in the link between cardiovascular risk factors, cIMT and clinical cardiovascular disease.

12.
J Am Soc Nephrol ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135082

RESUMO

BACKGROUND: Studies on the relationship between renal function and the human plasma proteome have identified several potential biomarkers. However, investigations have been conducted largely in European populations, and causality of the associations between plasma proteins and kidney function has never been addressed. METHODS: A cross-sectional study of 993 plasma proteins among 2,882 participants in four studies of European and admixed ancestries (KORA, INTERVAL, HUNT, QMDiab) identified trans-ethnic associations between eGFR/CKD and proteomic biomarkers. For the replicated associations, two-sample bidirectional Mendelian randomization (MR) was used to investigate potential causal relationships. Publicly available datasets and transcriptomic data from independent studies were used to examine the association between gene expression in kidney tissue and eGFR . RESULTS: Fifty-seven plasma proteins were associated with eGFR, including one novel protein. Twenty-three of these were additionally associated with CKD. The strongest inferred causal effect was the positive effect of eGFR on testican-2, in line with the known biological role of this protein and the expression of its protein-coding gene (SPOCK2) in renal tissue. We also observed suggestive evidence of an effect of melanoma inhibitory activity (MIA), carbonic anhydrase III, and cystatin-M on eGFR. CONCLUSIONS: In a discovery-replication setting, we identified 57 proteins trans-ethnically associated with eGFR. The revealed causal relationships are an important stepping-stone in establishing testican-2 as a clinically relevant physiological marker of kidney disease progression, and point to additional proteins warranting further investigation.

13.
Bioinformatics ; 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33978749

RESUMO

MOTIVATION: Multiple independently associated SNPs within a linkage disequilibrium (LD) region are a common phenomenon. Conditional analysis has been successful in identifying secondary signals. While conditional association tests are limited to specific genomic regions, they are benchmarked with genome-wide scale criterion, a conservative strategy. METHOD: Within the weighted hypothesis testing framework, we developed a "quasi-adaptive" method that uses the pairwise correlation (r2) and physical distance (d) from the index association to construct priority functions G = G(r2, d), which assign a SNP-specific α-threshold to each SNP. Family-wise error rate (FWER) and power of the approach were evaluated via simulations based on real GWAS data. We compared a series of different G-functions. RESULTS: Simulations under the null hypothesis on 1100 primary SNPs confirmed appropriate empirical FWER for all G-functions. A G-function with optimal r2 = 0.3 between index and secondary SNP which down-weighted SNPs at higher distance step-wise-strong and gave more emphasis on d than on r2 had overall best power. It also gave the best results in application to the real data sets. As a proof of concept, "quasi-adaptive" method was applied toGWAS on free thyroxine (FT4), inflammatory bowel disease (IBD), and human height. Application of the algorithm revealed 5 secondary signals in our example GWAS on FT4, 5 secondary signals in case of the IBD, and 19 secondary signals on human height, that would have gone undetected with the established genome-wide threshold (α = 5 ×10-8). AVAILABILITY: https://github.com/sghasemi64/Secondary-Signal. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

14.
Thyroid ; 31(8): 1171-1181, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33899528

RESUMO

Background: Observational studies suggest that even minor variations in thyroid function are associated with the risk of mood disorders, including major depressive disorder (MDD) and bipolar disorder (BD). However, it is unknown whether these associations are causal or not. We used a Mendelian randomization (MR) approach to investigate causal effects of minor variations in thyrotropin (TSH) and free thyroxine (fT4) levels on MDD and BD risk. Materials and Methods: We performed two-sample MR analyses using data from the largest publicly available genome-wide association studies on normal-range TSH (n = 54,288) and fT4 (n = 49,269) levels, MDD (170,756 cases, 329,443 controls) and BD (20,352 cases, 31,358 controls). Secondary MR analyses investigated the effects of TSH and fT4 levels on specific MDD and BD subtypes. Reverse MR was also performed to assess the effects of MDD and BD on TSH and fT4 levels. Results: There were no associations between genetically predicted TSH and fT4 levels and MDD risk, nor MDD subtypes and minor depressive symptoms. A one standard deviation increase in fT4 levels was nominally associated with an 11% decrease in the overall BD risk (odds ratio [OR] = 0.89, 95% confidence interval [CI] = 0.80-0.98, p = 0.022) and a 13% decrease in the BD type 1 risk (OR = 0.87, CI = 0.75-1.00, p = 0.047). In the reverse direction, genetic predisposition to MDD and BD was not associated with TSH nor fT4 levels. Conclusions: Variations in normal-range TSH and fT4 levels have no effects on the risk of MDD and its subtypes, and neither on minor depressive symptoms. This indicates that depressive symptoms should not be attributed to minor variations in thyroid function. Borderline associations with BD and BD type 1 risks suggest that further clinical studies should investigate the effect of thyroid hormone treatment in BD.

15.
Genes Brain Behav ; 20(5): e12737, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33876571

RESUMO

Genetic factors are assumed to contribute to memory performance, especially genes affecting the dopaminergic neurotransmission. We aimed to evaluate leading functional genetic variants of the dopamine system, Catechol-O-methyltransferase (COMT) SNP rs4680 and Brain-derived neurotropic factor (BDNF) SNP rs6265, previously found to be associated with memory performance. In two independent general population cohorts (total N = 5937) we investigated direct and interaction effects between COMT and BDNF SNPs on declarative memory performance. We found significant two-way interactions for COMT and BDNF in both cohorts but no direct genetic effects. Sensitivity analyses revealed that an interaction between COMT and BDNF was mainly carried by females. While direct associations of COMT and BDNF on memory have been reported previously, we could demonstrate that the interaction of COMT and BDNF is sex-dependent and more complex and needs further investigation. Our results could be demonstrated in two independent cohorts of valuable size.

16.
Transl Psychiatry ; 11(1): 192, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782385

RESUMO

A retrospective meta-analysis of magnetic resonance imaging voxel-based morphometry studies proposed that reduced gray matter volumes in the dorsal anterior cingulate and the left and right anterior insular cortex-areas that constitute hub nodes of the salience network-represent a common substrate for major psychiatric disorders. Here, we investigated the hypothesis that the common substrate serves as an intermediate phenotype to detect genetic risk variants relevant for psychiatric disease. To this end, after a data reduction step, we conducted genome-wide association studies of a combined common substrate measure in four population-based cohorts (n = 2271), followed by meta-analysis and replication in a fifth cohort (n = 865). After correction for covariates, the heritability of the common substrate was estimated at 0.50 (standard error 0.18). The top single-nucleotide polymorphism (SNP) rs17076061 was associated with the common substrate at genome-wide significance and replicated, explaining 1.2% of the common substrate variance. This SNP mapped to a locus on chromosome 5q35.2 harboring genes involved in neuronal development and regeneration. In follow-up analyses, rs17076061 was not robustly associated with psychiatric disease, and no overlap was found between the broader genetic architecture of the common substrate and genetic risk for major depressive disorder, bipolar disorder, or schizophrenia. In conclusion, our study identified that common genetic variation indeed influences the common substrate, but that these variants do not directly translate to increased disease risk. Future studies should investigate gene-by-environment interactions and employ functional imaging to understand how salience network structure translates to psychiatric disorder risk.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Esquizofrenia/genética
17.
Clin Res Cardiol ; 110(10): 1564-1573, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33774696

RESUMO

AIMS: Observational evidence suggests that physical activity (PA) is inversely and sedentarism positively related with cardiovascular disease risk. We performed a two-sample Mendelian randomization (MR) analysis to examine whether genetically predicted PA and sedentary behavior are related to coronary artery disease, myocardial infarction, and ischemic stroke. METHODS AND RESULTS: We used single nucleotide polymorphisms (SNPs) associated with self-reported moderate to vigorous PA (n = 17), accelerometer based PA (n = 7) and accelerometer fraction of accelerations > 425 milli-gravities (n = 7) as well as sedentary behavior (n = 6) in the UK Biobank as instrumental variables in a two sample MR approach to assess whether these exposures are related to coronary artery disease and myocardial infarction in the CARDIoGRAMplusC4D genome-wide association study (GWAS) or ischemic stroke in the MEGASTROKE GWAS. The study population included 42,096 cases of coronary artery disease (99,121 controls), 27,509 cases of myocardial infarction (99,121 controls), and 34,217 cases of ischemic stroke (404,630 controls). We found no associations between genetically predicted self-reported moderate to vigorous PA, accelerometer-based PA or accelerometer fraction of accelerations > 425 milli-gravities as well as sedentary behavior with coronary artery disease, myocardial infarction, and ischemic stroke. CONCLUSIONS: These results do not support a causal relationship between PA and sedentary behavior with risk of coronary artery disease, myocardial infarction, and ischemic stroke. Hence, previous observational studies may have been biased.

18.
Psychiatry Res ; 298: 113783, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33567384

RESUMO

Previous studies suggested that childhood trauma and a disturbed serotonergic neurotransmission are involved in the pathogenesis of alexithymia. Specifically, genetic polymorphisms of the serotonin receptors 5-HT1A and 5-HT2A were found to be associated with alexithymia. However, it is unclear whether these factors show main or interaction effects with childhood trauma on alexithymia. Data from two independent general-population cohorts of the Study of Health in Pomerania (SHIP-Trend: N=3,706, Age: range=20-83, 51.6% female, SHIP-LEGEND: N=2,162, Age: range=20-80, 52.5% female) were used. The Toronto Alexithymia Scale-20 (TAS-20) and the Childhood Trauma Questionnaire (CTQ) were applied. Genotypes of rs6295 of 5-HT1A and rs6311 of 5-HT2A were determined. Ordinary least-squared regression models with robust standard errors were applied to investigate associations of the main and interaction effects of childhood maltreatment and the polymorphisms with alexithymia. Childhood trauma, but none of the investigated polymorphisms showed main effects on alexithymia. However, childhood trauma showed significant CTQ sum score x rs6295 interactions in male subjects in both samples such that the presence of the G-allele diminished the CTQ associated increase in the TAS-20 sum scores. Our results support a strong role of early life stress and interactions with rs6295 on alexithymic personality features at least in male subjects.


Assuntos
Sintomas Afetivos , Polimorfismo Genético , Sintomas Afetivos/genética , Feminino , Genótipo , Humanos , Masculino , Receptor 5-HT1A de Serotonina , Receptor 5-HT2A de Serotonina/genética , Receptores de Serotonina , Inquéritos e Questionários
19.
Eur J Epidemiol ; 36(3): 335-344, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33548002

RESUMO

Hypothyroidism and hyperthyroidism are observationally associated with sex hormone concentrations and sexual dysfunction, but causality is unclear. We investigated whether TSH, fT4, hypo- and hyperthyroidism are causally associated with sex hormones and sexual function. We used publicly available summary statistics from genome-wide association studies on TSH and fT4 and hypo- and hyperthyroidism from the ThyroidOmics Consortium (N ≤ 54,288). Outcomes from UK Biobank (women ≤ 194,174/men ≤ 167,020) and ReproGen (women ≤ 252,514) were sex hormones (sex hormone binding globulin [SHBG], testosterone, estradiol, free androgen index [FAI]) and sexual function (ovulatory function in women: duration of menstrual period, age at menarche and menopause, reproductive lifespan, and erectile dysfunction in men). We performed two-sample Mendelian randomization (MR) analyses on summary level, and unweighted genetic risk score (GRS) analysis on individual level data. One SD increase in TSH was associated with a 1.332 nmol/L lower (95% CI: - 0.717,- 1.946; p = 2 × 10-5) SHBG and a 0.103 nmol/l lower (- 0.051,V0.154; p = 9 × 10-5) testosterone in two-sample MR, supported by the GRS approach. Genetic predisposition to hypothyroidism was associated with decreased and genetic predisposition to hyperthyroidism with increased SHBG and testosterone in both approaches. The GRS for fT4 was associated with increased testosterone and estradiol in women only. The GRS for TSH and hypothyroidism were associated with increased and the GRS for hyperthyroidism with decreased FAI in men only. While genetically predicted thyroid function was associated with sex hormones, we found no association with sexual function.


Assuntos
Disfunção Erétil/etiologia , Hipertireoidismo/complicações , Hipotireoidismo/complicações , Análise da Randomização Mendeliana/métodos , Globulina de Ligação a Hormônio Sexual/metabolismo , Disfunções Sexuais Fisiológicas/etiologia , Disfunções Sexuais Psicogênicas/etiologia , Glândula Tireoide/fisiologia , Tireotropina/sangue , Tiroxina/sangue , Adulto , Estradiol/sangue , Feminino , Hormônios Esteroides Gonadais , Humanos , Hipertireoidismo/metabolismo , Hipotireoidismo/metabolismo , Masculino , Pessoa de Meia-Idade , Testosterona , Tireotropina/metabolismo , Tiroxina/metabolismo
20.
Hum Mol Genet ; 30(5): 393-409, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33517400

RESUMO

Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.


Assuntos
Estudo de Associação Genômica Ampla , Cadeias HLA-DRB1/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-1/genética , Interleucina-6/genética , Receptores de Interleucina-6/genética , Estudos de Coortes , Regulação da Expressão Gênica , Loci Gênicos , Predisposição Genética para Doença , Humanos , Interleucina-6/sangue , Polimorfismo de Nucleotídeo Único , /genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...