Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33274371

RESUMO

BACKGROUND: Thyroid hormone is essential for optimal human neurodevelopment and may modify the risk of attention-deficit hyperactivity disorder (ADHD). However, the brain structures involved are unknown and it is unclear if the adult brain is also susceptible to changes in thyroid status. METHODS: We used international classification of disease-10 codes, polygenic thyroid scores at different thresholds of association with thyroid traits (pT-values) and image-derived phenotypes in UK Biobank (n=18,825) to investigate the effects of a recorded diagnosis of thyroid disease and genetic risk for thyroid status on cerebellar and subcortical grey matter volume. Regional genetic pleiotropy between thyroid status and ADHD was explored using the GWAS-pairwise method. RESULTS: A recorded diagnosis of hypothyroidism (n=419) was associated with significant reductions in total cerebellar and pallidum grey matter volumes (ß[95%CI] = -0.14[-0.23, -0.06], p = 0.0005 and ß[95%CI] = -0.12[-0.20, -0.04], p = 0.0042, respectively), mediated in part by increases in Body Mass Index. Whilst we found no evidence for total cerebellar volume alterations with increased polygenic scores for any thyroid trait, opposing influences of increased polygenic scores for hypo- and hyperthyroidism were found in the pallidum (pT<1e-3: ß[95%CI] = -0.02[-0.03,-0.01], p = 0.0003 and pT<1e-7: ß[95%CI] = 0.02[0.01,0.03], p = 0.0003, respectively). Neither hypo- nor hyperthyroidism showed evidence of regional genetic pleiotropy with ADHD. CONCLUSIONS: Thyroid status affects grey matter volume in adults, particularly at the level of the cerebellum and pallidum, with potential implications for the regulation of motor, cognitive and affective function.

2.
Kidney Int ; 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33137338

RESUMO

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33027520

RESUMO

OBJECTIVES: How insulin-like growth factor-1 (IGF-1) is related to OA is not well understood. We determined relationships between IGF-1 and hospital-diagnosed hand, hip and knee OA in UK Biobank, using Mendelian randomization (MR) to determine causality. METHODS: Serum IGF-1 was assessed by chemiluminescent immunoassay. OA was determined using Hospital Episode Statistics. One-sample MR (1SMR) was performed using two-stage least-squares regression, with an unweighted IGF-1 genetic risk score as an instrument. Multivariable MR included BMI as an additional exposure (instrumented by BMI genetic risk score). MR analyses were adjusted for sex, genotyping chip and principal components. We then performed two-sample MR (2SMR) using summary statistics from Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) (IGF-1, N = 30 884) and the recent genome-wide association study meta-analysis (N = 455 221) of UK Biobank and Arthritis Research UK OA Genetics (arcOGEN). RESULTS: A total of 332 092 adults in UK Biobank had complete data. Their mean (s.d.) age was 56.5 (8.0) years and 54% were female. IGF-1 was observationally related to a reduced odds of hand OA [odds ratio per doubling = 0.87 (95% CI 0.82, 0.93)], and an increased odds of hip OA [1.04 (1.01, 1.07)], but was unrelated to knee OA [0.99 (0.96, 1.01)]. Using 1SMR, we found strong evidence for an increased risk of hip [odds ratio per s.d. increase = 1.57 (1.21, 2.01)] and knee [1.30 (1.07, 1.58)] OA with increasing IGF-1 concentration. By contrast, we found no evidence for a causal effect of IGF-1 concentration on hand OA [0.98 (0.57, 1.70)]. Results were consistent when estimated using 2SMR and in multivariable MR analyses accounting for BMI. CONCLUSION: We have found evidence that increased serum IGF-1 is causally related to higher risk of hip and knee OA.

5.
Cell Syst ; 11(3): 229-238.e5, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32916098

RESUMO

The electrocardiogram (ECG) is one of the most useful non-invasive diagnostic tests for a wide array of cardiac disorders. Traditional approaches to analyzing ECGs focus on individual segments. Here, we performed comprehensive deep phenotyping of 77,190 ECGs in the UK Biobank across the complete cycle of cardiac conduction, resulting in 500 spatial-temporal datapoints, across 10 million genetic variants. In addition to characterizing polygenic risk scores for the traditional ECG segments, we identified over 300 genetic loci that are statistically associated with the high-dimensional representation of the ECG. We established the genetic ECG signature for dilated cardiomyopathy, associated the BAG3, HSPB7/CLCNKA, PRKCA, TMEM43, and OBSCN loci with disease risk and confirmed this association in an independent cohort. In total, our work demonstrates that a high-dimensional analysis of the entire ECG provides unique opportunities for studying cardiac biology and disease and furthering drug development. A record of this paper's transparent peer review process is included in the Supplemental Information.

6.
Nat Commun ; 11(1): 4796, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963231

RESUMO

Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/ß-catenin, TGF-ß and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.


Assuntos
Envelhecimento/genética , Encéfalo , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Doenças Neurodegenerativas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estruturas Cromossômicas , Cognição , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único
7.
Circ Genom Precis Med ; 13(5): 387-395, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32822252

RESUMO

BACKGROUND: The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD. METHODS: Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies. RESULTS: We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, PITX2 and SCN10A) were associated with longer PWD but lower AF risk. CONCLUSIONS: Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF.

8.
J Am Soc Nephrol ; 31(10): 2326-2340, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32764137

RESUMO

BACKGROUND: Genetic variants identified in genome-wide association studies (GWAS) are often not specific enough to reveal complex underlying physiology. By integrating RNA-seq data and GWAS summary statistics, novel computational methods allow unbiased identification of trait-relevant tissues and cell types. METHODS: The CKDGen consortium provided GWAS summary data for eGFR, urinary albumin-creatinine ratio (UACR), BUN, and serum urate. Genotype-Tissue Expression Project (GTEx) RNA-seq data were used to construct the top 10% specifically expressed genes for each of 53 tissues followed by linkage disequilibrium (LD) score-based enrichment testing for each trait. Similar procedures were performed for five kidney single-cell RNA-seq datasets from humans and mice and for a microdissected tubule RNA-seq dataset from rat. Gene set enrichment analyses were also conducted for genes implicated in Mendelian kidney diseases. RESULTS: Across 53 tissues, genes in kidney function-associated GWAS loci were enriched in kidney (P=9.1E-8 for eGFR; P=1.2E-5 for urate) and liver (P=6.8·10-5 for eGFR). In the kidney, proximal tubule was enriched in humans (P=8.5E-5 for eGFR; P=7.8E-6 for urate) and mice (P=0.0003 for eGFR; P=0.0002 for urate) and confirmed as the primary cell type in microdissected tubules and organoids. Gene set enrichment analysis supported this and showed enrichment of genes implicated in monogenic glomerular diseases in podocytes. A systematic approach generated a comprehensive list of GWAS genes prioritized by cell type-specific expression. CONCLUSIONS: Integration of GWAS statistics of kidney function traits and gene expression data identified relevant tissues and cell types, as a basis for further mechanistic studies to understand GWAS loci.

9.
Nat Commun ; 11(1): 3981, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769997

RESUMO

Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors.


Assuntos
Pleiotropia Genética , Estudo de Associação Genômica Ampla , Neoplasias da Glândula Tireoide/genética , Tireotropina/genética , Loci Gênicos , Predisposição Genética para Doença , Bócio/genética , Humanos , Análise da Randomização Mendeliana , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Mapeamento Físico do Cromossomo , Prevalência , Fatores de Risco , Tireoglobulina/genética , Neoplasias da Glândula Tireoide/epidemiologia
10.
Thyroid ; 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32746749

RESUMO

Background: Observational studies have demonstrated that variation in normal range thyroid function is associated with major cardiovascular risk factors, including dyslipidemia, hypertension, type 2 diabetes (T2D), and obesity. As observational studies are prone to residual confounding, reverse causality, and selection bias, we used a Mendelian randomization (MR) approach to investigate whether these associations are causal or not. Methods: Two-sample MR analysis using data from the largest available genome-wide association studies on normal range thyrotropin (TSH) and free thyroxine (fT4) levels, serum lipid levels, blood pressure measurements, T2D, and obesity traits (body mass index [BMI] and waist/hip ratio). Results: A one standard deviation (SD) increase in genetically predicted TSH levels was associated with a 0.037 SD increase in total cholesterol levels (p = 3.0 × 10-4). After excluding pleiotropic instruments, we also observed significant associations between TSH levels and low-density lipoprotein levels (ß = 0.026 SD, p = 1.9 × 10-3), pulse pressure (ß = -0.477 mmHg, p = 7.5 × 10-10), and T2D risk (odds ratio = 0.95, p = 2.5 × 10-3). While we found no evidence of causal associations between TSH or fT4 levels and obesity traits, we found that a one SD increase in genetically predicted BMI was associated with a 0.075 SD decrease in fT4 levels (p = 3.6 × 10-4). Conclusions: Variation in normal range thyroid function affects serum cholesterol levels, blood pressure, and T2D risk.

11.
Cancer Res ; 80(17): 3765-3769, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32646967

RESUMO

Observational studies have suggested that physical activity might lower the risk of lung cancer in former and current smokers, but not in never-smokers. Using genetic instruments for self-reported and accelerometer-measured physical activity traits implemented through two-sample Mendelian randomization (MR), we sought to strengthen the evidence for causality. We used 18 genome-wide significant (P < 5 × 10-8) single-nucleotide polymorphisms (SNP) for self-reported moderate-to-vigorous physical activity and seven SNP for accelerometer-measured ("average acceleration") physical activity from up to 377,234 UK Biobank participants and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell carcinoma, and 2,664 small-cell carcinoma cases) and 56,450 controls. MR analysis suggested no effect of self-reported physical activity [OR (95% confidence interval (CI)) = 0.67 (0.42-1.05); P = 0.081; Q-value = 0.243] and accelerometer-measured activity [OR (95% CI) = 0.98 (0.93-1.03); P = 0.372; Q-value = 0.562] on lung cancer. There was no evidence for associations of physical activity with histologic types and lung cancer in ever and never smokers. Replication analysis using genetic instruments from a different genome-wide study and sensitivity analysis to address potential pleiotropic effects led to no substantive change in estimates. Collectively, these findings do not support a protective relationship between physical activity and the risk of lung cancer. SIGNIFICANCE: A new genetic study provides little evidence that recommending physical activity would help prevent lung cancer.


Assuntos
Exercício Físico , Neoplasias Pulmonares , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Reino Unido/epidemiologia
12.
Neurology ; 95(13): e1897-e1905, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32680943

RESUMO

OBJECTIVE: Evidence from observational studies for the effect of physical activity on the risk of Alzheimer disease (AD) is inconclusive. We performed a 2-sample mendelian randomization analysis to examine whether physical activity is protective for AD. METHODS: Summary data of genome-wide association studies on physical activity and AD were used. The primary study population included 21,982 patients with AD and 41,944 cognitively normal controls. Eight single nucleotide polymorphisms (SNPs) known at p < 5 × 10-8 to be associated with average accelerations and 8 SNPs associated at p < 5 × 10-7 with vigorous physical activity (fraction of accelerations >425 milligravities) served as instrumental variables. RESULTS: There was no association between genetically predicted average accelerations with the risk of AD (inverse variance weighted odds ratio [OR] per SD increment: 1.03, 95% confidence interval 0.97-1.10, p = 0.332). Genetic liability for fraction of accelerations >425 milligravities was unrelated to AD risk. CONCLUSION: The present study does not support a causal association between physical activity and risk of AD.


Assuntos
Doença de Alzheimer/genética , Exercício Físico , Predisposição Genética para Doença/genética , Análise da Randomização Mendeliana , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco
13.
Mol Genet Genomic Med ; 8(9): e1345, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32558353

RESUMO

BACKGROUND: The mineralocorticoid receptor (MR) in the brain has a key role in the regulation of the central stress response and is associated with memory performance. We investigated whether the genetic polymorphisms rs5522 and rs2070951 of NR3C2 showed main and interactive effects with childhood trauma on memory decline. METHODS: Declarative memory was longitudinally assessed in 1,318 participants from the community-dwelling Study of Health in Pomerania using the Verbal Learning and Memory Test (VLMT). In a subsample of 377 participants aged 60 and older, the Mini-Mental Status Examination (MMSE) was additionally applied. Mean follow-up time for the VLMT and MMSE were 6.4 and 10.7 years, respectively. RESULTS: Homozygous carriers of the G allele of rs2070951 (p < .01) and of the A allele of rs5522 (p < .001) showed higher immediate recall of words as compared to carriers of C allele (rs2070951) or the G allele (rs5522). The CG haplotype was associated with decreased recall (p < .001). Likewise, in the subsample of older patients, the AA genotype of rs5522 was associated with higher MMSE scores (p < .05). CG haplotypes showed significantly reduced MMSE scores in comparison to the reference haplotype (ß = -0.60; p < .01). CONCLUSIONS: Our results indicate that the GG genotype of rs2070951 as well as the AA genotype of rs5522 are associated with diminished memory decline.

14.
Kidney Int ; 98(3): 708-716, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454124

RESUMO

Blood pressure and kidney function have a bidirectional relation. Hypertension has long been considered as a risk factor for kidney function decline. However, whether intensive blood pressure control could promote kidney health has been uncertain. The kidney is known to have a major role in affecting blood pressure through sodium extraction and regulating electrolyte balance. This bidirectional relation makes causal inference between these two traits difficult. Therefore, to examine the causal relations between these two traits, we performed two-sample Mendelian randomization analyses using summary statistics of large-scale genome-wide association studies. We selected genetic instruments more likely to be specific for kidney function using meta-analyses of complementary kidney function biomarkers (glomerular filtration rate estimated from serum creatinine [eGFRcr], and blood urea nitrogen from the CKDGen Consortium). Systolic and diastolic blood pressure summary statistics were from the International Consortium for Blood Pressure and UK Biobank. Significant evidence supported the causal effects of higher kidney function on lower blood pressure. Based on the mode-based Mendelian randomization method, the effect estimates for one standard deviation (SD) higher in log-transformed eGFRcr was -0.17 SD unit (95 % confidence interval: -0.09 to -0.24) in systolic blood pressure and -0.15 SD unit (95% confidence interval: -0.07 to -0.22) in diastolic blood pressure. In contrast, the causal effects of blood pressure on kidney function were not statistically significant. Thus, our results support causal effects of higher kidney function on lower blood pressure and suggest preventing kidney function decline can reduce the public health burden of hypertension.

15.
J Clin Endocrinol Metab ; 105(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374820

RESUMO

CONTEXT: Observational studies suggest that variations in normal range thyroid function are associated with cardiovascular diseases. However, it remains to be determined whether these associations are causal or not. OBJECTIVE: To test whether genetically determined variation in normal range thyroid function is causally associated with the risk of stroke and coronary artery disease (CAD) and investigate via which pathways these relations may be mediated. DESIGN, SETTING, AND PARTICIPANTS: Mendelian randomization analyses for stroke and CAD using genetic instruments associated with normal range thyrotropin (TSH) and free thyroxine levels or Hashimoto's thyroiditis and Graves' disease. The potential mediating role of known stroke and CAD risk factors was examined. Publicly available summary statistics data were used. MAIN OUTCOME MEASURES: Stroke or CAD risk per genetically predicted increase in TSH or FT4 levels. RESULTS: A 1 standard deviation increase in TSH was associated with a 5% decrease in the risk of stroke (odds ratio [OR], 0.95; 95% confidence interval [CI], 0.91-0.99; P = 0.008). Multivariable MR analyses indicated that this effect is mainly mediated via atrial fibrillation. MR analyses did not show a causal association between normal range thyroid function and CAD. Secondary analyses showed a causal relationship between Hashimoto's thyroiditis and a 7% increased risk of CAD (OR, 1.07; 95% CI, 1.01-1.13; P = 0.026), which was mainly mediated via body mass index. CONCLUSION: These results provide important new insights into the causal relationships and mediating pathways between thyroid function, stroke, and CAD. We identify variation in normal range thyroid function and Hashimoto's thyroiditis as risk factors for stroke and CAD, respectively.

16.
Gastroenterology ; 159(2): 534-548.e11, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32376409

RESUMO

BACKGROUND & AIMS: Homozygosity for the Pi∗Z variant of the gene that encodes the alpha-1 antitrypsin peptide (AAT), called the Pi∗ZZ genotype, causes a liver and lung disease called alpha-1 antitrypsin deficiency. Heterozygosity (the Pi∗MZ genotype) is a risk factor for cirrhosis in individuals with liver disease. Up to 4% of Europeans have the Pi∗MZ genotype; we compared features of adults with and without Pi∗MZ genotype among persons without preexisting liver disease. METHODS: We analyzed data from the European Alpha-1 Liver Cohort, from 419 adults with the Pi∗MZ genotype, 309 adults with the Pi∗ZZ genotype, and 284 individuals without the variant (noncarriers). All underwent a comprehensive evaluation; liver stiffness measurements (LSMs) were made by transient elastography. Liver biopsies were analyzed to define histologic and biochemical features associated with the Pi∗Z variant. Levels of serum transaminases were retrieved from 444,642 participants, available in the United Kingdom biobank. RESULTS: In the UK biobank database, levels of serum transaminases were increased in subjects with the Pi∗MZ genotype compared with noncarriers. In the Alpha-1 Liver Cohort, adults with Pi∗MZ had lower levels of gamma-glutamyl transferase in serum and lower LSMs than adults with the Pi∗ZZ variant, but these were higher than in noncarriers. Ten percent of subjects with the Pi∗MZ genotype vs 4% of noncarriers had LSMs of 7.1 kPa or more (adjusted odds ratio, 4.8; 95% confidence interval, 2.0-11.8). Obesity and diabetes were the most important factors associated with LSMs ≥7.1 kPa in subjects with the Pi∗MZ genotype. AAT inclusions were detected in liver biopsies of 63% of subjects with the Pi∗MZ genotype, vs 97% of subjects with the Pi∗ZZ genotype, and increased with liver fibrosis stages. Subjects with the Pi∗MZ genotype did not have increased hepatic levels of AAT, whereas levels of insoluble AAT varied among individuals. CONCLUSIONS: Adults with the Pi∗MZ genotype have lower levels of serum transaminases, fewer AAT inclusions in liver, and lower liver stiffness than adults with the Pi∗ZZ genotype, but higher than adults without the Pi∗Z variant. These findings should help determine risk of subjects with the Pi∗MZ genotype and aid in counseling.

18.
J Clin Endocrinol Metab ; 105(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32271924

RESUMO

CONTEXT: Genetic factors are major determinants of thyroid function. Over the last two decades, multiple genetic variants have been associated with variations in normal range thyroid function tests. Most recently, a large-scale genome-wide association study (GWAS) doubled the number of known variants associated with normal range thyrotropin (TSH) and free thyroxine (FT4) levels. EVIDENCE ACQUISITION: This review summarizes the results of genetic association studies on normal range thyroid function and explores how these genetic variants can be used in future studies to improve our understanding of thyroid hormone regulation and disease. EVIDENCE SYNTHESIS: Serum TSH and FT4 levels are determined by multiple genetic variants on virtually all levels of the hypothalamus-pituitary-thyroid (HPT) axis. Functional follow-up studies on top of GWAS hits has the potential to discover new key players in thyroid hormone regulation, as exemplified by the identification of the thyroid hormone transporter SLC17A4 and the metabolizing enzyme AADAT. Translational studies may use these genetic variants to investigate causal associations between thyroid function and various outcomes in Mendelian Randomization (MR) studies, to identify individuals with an increased risk of thyroid dysfunction, and to predict the individual HPT axis setpoint. CONCLUSIONS: Recent genetic studies have greatly improved our understanding of the genetic basis of thyroid function, and have revealed novel pathways involved in its regulation. In addition, these findings have paved the way for various lines of research that can improve our understanding of thyroid hormone regulation and thyroid diseases, as well as the potential use of these markers in future clinical practice.

19.
Circulation ; 141(16): 1307-1317, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32148083

RESUMO

BACKGROUND: High blood pressure (BP) is a risk factor for cardiovascular morbidity and mortality. While BP is regulated by the function of kidney, vasculature, and sympathetic nervous system, recent experimental data suggest that immune cells may play a role in hypertension. METHODS: We studied the relationship between major white blood cell types and blood pressure in the UK Biobank population and used Mendelian randomization (MR) analyses using the ≈750 000 UK-Biobank/International Consortium of Blood Pressure-Genome-Wide Association Studies to examine which leukocyte populations may be causally linked to BP. RESULTS: A positive association between quintiles of lymphocyte, monocyte, and neutrophil counts, and increased systolic BP, diastolic BP, and pulse pressure was observed (eg, adjusted systolic BP mean±SE for 1st versus 5th quintile respectively: 140.13±0.08 versus 141.62±0.07 mm Hg for lymphocyte, 139.51±0.08 versus 141.84±0.07 mm Hg for monocyte, and 137.96±0.08 versus 142.71±0.07 mm Hg for neutrophil counts; all P<10-50). Using 121 single nucleotide polymorphisms in MR, implemented through the inverse-variance weighted approach, we identified a potential causal relationship of lymphocyte count with systolic BP and diastolic BP (causal estimates: 0.69 [95% CI, 0.19-1.20] and 0.56 [95% CI, 0.23-0.90] of mm Hg per 1 SD genetically elevated lymphocyte count, respectively), which was directionally concordant to the observational findings. These inverse-variance weighted estimates were consistent with other robust MR methods. The exclusion of rs3184504 SNP in the SH2B3 locus attenuated the magnitude of the signal in some of the MR analyses. MR in the reverse direction found evidence of positive effects of BP indices on counts of monocytes, neutrophils, and eosinophils but not lymphocytes or basophils. Subsequent MR testing of lymphocyte count in the context of genetic correlation with renal function or resting and postexercise heart rate demonstrated a positive association of lymphocyte count with urine albumin-to-creatinine ratio. CONCLUSIONS: Observational and genetic analyses demonstrate a concordant, positive and potentially causal relationship of lymphocyte count with systolic BP and diastolic BP.

20.
Cereb Cortex ; 30(4): 2307-2320, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109272

RESUMO

We analyzed the genomic architecture of neuroanatomical diversity using magnetic resonance imaging and single nucleotide polymorphism (SNP) data from >26 000 individuals from the UK Biobank project and 5 other projects that had previously participated in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our results confirm the polygenic architecture of neuroanatomical diversity, with SNPs capturing from 40% to 54% of regional brain volume variance. Chromosomal length correlated with the amount of phenotypic variance captured, r ~ 0.64 on average, suggesting that at a global scale causal variants are homogeneously distributed across the genome. At a local scale, SNPs within genes (~51%) captured ~1.5 times more genetic variance than the rest, and SNPs with low minor allele frequency (MAF) captured less variance than the rest: the 40% of SNPs with MAF <5% captured

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA