Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 135(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34080635

RESUMO

Despite the recognized significance of reversible protein lipidation (S-acylation) for T cell receptor signal transduction, the enzymatic control of this post-translational modification in T cells remains poorly understood. Here, we demonstrate that DHHC21 (also known as ZDHHC21), a member of the DHHC family of mammalian protein acyltransferases, mediates T cell receptor-induced S-acylation of proximal T cell signaling proteins. Using Zdhhc21dep mice, which express a functionally deficient version of DHHC21, we show that DHHC21 is a Ca2+/calmodulin-dependent enzyme critical for activation of naïve CD4+ T cells in response to T cell receptor stimulation. We find that disruption of the Ca2+/calmodulin-binding domain of DHHC21 does not affect thymic T cell development but prevents differentiation of peripheral CD4+ T cells into Th1, Th2 and Th17 effector T helper lineages. Our findings identify DHHC21 as an essential component of the T cell receptor signaling machinery and define a new role for protein acyltransferases in regulation of T cell-mediated immunity.

2.
J Biol Chem ; : 100311, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33482200

RESUMO

ZAP-70 is a tyrosine kinase essential for T cell immune responses. Upon engagement of the T cell receptor (TCR), ZAP-70 is recruited to the specialized plasma membrane domains, becomes activated and is released to phosphorylate its laterally segregated targets. A shift in ZAP-70 distribution at the plasma membrane is recognized as a critical step in TCR signal transduction and amplification. However, the molecular mechanism supporting stimulation-dependent plasma membrane compartmentalization of ZAP-70 remains poorly understood. In this study, we identified previously uncharacterized lipidation (S-acylation) of ZAP-70 using Acyl-Biotin Exchange (ABE) assay, a technique that selectively captures S-acylated proteins. We found that this post-translational modification of ZAP-70 is dispensable for its enzymatic activity. However, the lipidation-deficient mutant of ZAP-70 failed to propagate the TCR pathway suggesting that S-acylation is essential for ZAP-70 interaction with its protein substrates. The kinetics of ZAP-70 S-acylation were consistent with TCR signaling events indicating that agonist-induced S-acylation is a part of the signaling mechanism controlling T cell activation and function. Taken together, our results suggest that TCR-induced S-acylation of ZAP-70 can serve as a critical regulator of T cell-mediated immunity.

3.
Mol Biol Rep ; 47(8): 6471-6478, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32789573

RESUMO

S-acylation reversible-post-translational lipidation of cysteine residues-is emerging as an important regulatory mechanism in T cell signaling. Dynamic S-acylation is critical for protein recruitment into the T cell receptor complex and initiation of the subsequent signaling cascade. However, the enzymatic control of protein S-acylation in T cells remains poorly understood. Here, we report a previously uncharacterized role of DHHC21, a member of the mammalian family of DHHC protein acyltransferases, in regulation of the T cell receptor pathway. We found that loss of DHHC21 prevented S-acylation of key T cell signaling proteins, resulting in disruption of the early signaling events and suppressed expression of T cell activation markers. Furthermore, downregulation of DHHC21 prevented activation and differentiation of naïve T cells into effector subtypes. Together, our study provides the first direct evidence that DHHC protein acyltransferases can play an essential role in regulation of T cell-mediated immunity.

4.
Mol Cell Neurosci ; 108: 103542, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32841720

RESUMO

The extracellular accumulation of amyloid ß (Aß) fragments of amyloid precursor protein (APP) in brain parenchyma is a pathological hallmark of Alzheimer's disease (AD). APP can be cleaved into Aß on late endosomes/multivesicular bodies (MVBs). E3 ubiquitin ligases have been linked to Aß production, but specific E3 ligases associated with APP ubiquitination that may affect targeting of APP to endosomes have not yet been described. Using cultured cortical neurons isolated from rat pups, we reconstituted APP movement into the internal vesicles (ILVs) of MVBs. Loss of endosomal sorting complexes required for transport (ESCRT) components inhibited APP movement into ILVs and increased endosomal Aß42 generation, implying a requirement for APP ubiquitination. We identified an ESCRT-binding and APP-interacting endosomal E3 ubiquitin ligase, ubiquitination factor E4B (UBE4B) that regulates APP ubiquitination. Depleting UBE4B in neurons inhibited APP ubiquitination and internalization into MVBs, resulting in increased endosomal Aß42 levels and increased neuronal secretion of Aß42. When we examined AD brains, we found levels of the UBE4B-interacting ESCRT component, hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), were significantly decreased in AD brains. These data suggest that ESCRT components critical for membrane protein sorting in the endocytic pathway are altered in AD. These results indicate that the molecular machinery underlying endosomal trafficking of APP, including the ubiquitin ligase UBE4B, regulates Aß levels and may play an essential role in AD progression.

5.
J Vis Exp ; (158)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338654

RESUMO

Protein S-acylation, also referred to as S-palmitoylation, is a reversible post-translational modification of cysteine residues with long-chain fatty acids via a labile thioester bond. S-acylation, which is emerging as a widespread regulatory mechanism, can modulate almost all aspects of the biological activity of proteins, from complex formation to protein trafficking and protein stability. The recent progress in understanding of the biological function of protein S-acylation was achieved largely due to the development of novel biochemical tools allowing robust and sensitive detection of protein S-acylation in a variety of biological samples. Here, we describe acyl resin-assisted capture (Acyl-RAC), a recently developed method based on selective capture of endogenously S-acylated proteins by thiol-reactive Sepharose beads. Compared to existing approaches, Acyl-RAC requires fewer steps and can yield more reliable results when coupled with mass spectrometry for identification of novel S-acylation targets. A major limitation in this technique is the lack of ability to discriminate between fatty acid species attached to cysteines via the same thioester bond.


Assuntos
Acilação/genética , Proteína S/metabolismo
6.
Mol Biol Cell ; 26(24): 4427-37, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26446839

RESUMO

Manganese protects cells against forms of Shiga toxin by down-regulating the cycling Golgi protein GPP130. Down-regulation occurs when Mn binding causes GPP130 to oligomerize and traffic to lysosomes. To determine how GPP130 is redirected to lysosomes, we tested the role of GGA1 and clathrin, which mediate sorting in the canonical Golgi-to-lysosome pathway. GPP130 oligomerization was induced using either Mn or a self-interacting version of the FKBP domain. Inhibition of GGA1 or clathrin specifically blocked GPP130 redistribution, suggesting recognition of the aggregated GPP130 by the GGA1/clathrin-sorting complex. Unexpectedly, however, GPP130's cytoplasmic domain was not required, and redistribution also occurred after removal of GPP130 sequences needed for its normal cycling. Therefore, to test whether aggregate recognition might be a general phenomenon rather than one involving a specific GPP130 determinant, we induced homo-oligomerization of two unrelated Golgi-targeted constructs using the FKBP strategy. These were targeted to the cis- and trans-Golgi, respectively, using domains from mannosidase-1 and galactosyltransferase. Significantly, upon oligomerization, each redistributed to peripheral punctae and was degraded. This occurred in the absence of detectable UPR activation. These findings suggest the unexpected presence of quality control in the Golgi that recognizes aggregated Golgi proteins and targets them for degradation in lysosomes.


Assuntos
Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Regulação para Baixo , Endossomos/metabolismo , Células HeLa , Humanos , Manganês/farmacologia , Fosfoproteínas/metabolismo , Multimerização Proteica , Transporte Proteico , Proteólise , Toxina Shiga/metabolismo
7.
Mol Biol Cell ; 25(19): 3049-58, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079690

RESUMO

Manganese (Mn) protects cells against lethal doses of purified Shiga toxin by causing the degradation of the cycling transmembrane protein GPP130, which the toxin uses as a trafficking receptor. Mn-induced GPP130 down-regulation, in addition to being a potential therapeutic approach against Shiga toxicosis, is a model for the study of metal-regulated protein sorting. Significantly, however, the mechanism by which Mn regulates GPP130 trafficking is unknown. Here we show that a transferable trafficking determinant within GPP130 bound Mn and that Mn binding induced GPP130 oligomerization in the Golgi. Alanine substitutions blocking Mn binding abrogated both oligomerization of GPP130 and GPP130 sorting from the Golgi to lysosomes. Further, oligomerization was sufficient because forced aggregation, using a drug-controlled polymerization domain, redirected GPP130 to lysosomes in the absence of Mn. These experiments reveal metal-induced oligomerization as a Golgi sorting mechanism for a medically relevant receptor for Shiga toxin.


Assuntos
Complexo de Golgi/metabolismo , Manganês/farmacologia , Multimerização Proteica/efeitos dos fármacos , Toxina Shiga/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Alanina/química , Linhagem Celular Tumoral , Regulação para Baixo , Disenteria Bacilar/patologia , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Manganês/química , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...