Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Neurol ; 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600826

RESUMO

OBJECTIVE: Pathogenic variants in KCNB1, encoding the voltage-gated potassium channel KV 2.1, are associated with developmental and epileptic encephalopathy (DEE). Previous functional studies on a limited number of KCNB1 variants indicated a range of molecular mechanisms by which variants affect channel function, including loss of voltage sensitivity, loss of ion selectivity, and reduced cell-surface expression. METHODS: We evaluated a series of 17 KCNB1 variants associated with DEE or other neurodevelopmental disorders (NDDs) to rapidly ascertain channel dysfunction using high-throughput functional assays. Specifically, we investigated the biophysical properties and cell-surface expression of variant KV 2.1 channels expressed in heterologous cells using high-throughput automated electrophysiology and immunocytochemistry-flow cytometry. RESULTS: Pathogenic variants exhibited diverse functional defects, including altered current density and shifts in the voltage dependence of activation and/or inactivation, as homotetramers or when coexpressed with wild-type KV 2.1. Quantification of protein expression also identified variants with reduced total KV 2.1 expression or deficient cell-surface expression. INTERPRETATION: Our study establishes a platform for rapid screening of KV 2.1 functional defects caused by KCNB1 variants associated with DEE and other NDDs. This will aid in establishing KCNB1 variant pathogenicity and the mechanism of dysfunction, which will enable targeted strategies for therapeutic intervention based on molecular phenotype. ANN NEUROL 2019.

2.
Clin Genet ; 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31397880

RESUMO

Pathogenic MAGEL2 variants result in the phenotypes of Chitayat-Hall syndrome (CHS), Schaaf-Yang syndrome (SYS) and Prader-Willi syndrome (PWS). We present five patients with mutations in MAGEL2, including the first patient reported with a missense variant, adding to the limited literature. Further, we performed a systematic review of the CHS and SYS literature, assess the overlap between CHS, SYS and PWS, and analyze genotype-phenotype correlations among them. We conclude that there is neither a clinical nor etiological difference between CHS and SYS, and propose that the two syndromes simply be referred to as MAGEL2-related disorders.

3.
Am J Hum Genet ; 105(3): 631-639, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31353024

RESUMO

Notch signaling is an established developmental pathway for brain morphogenesis. Given that Delta-like 1 (DLL1) is a ligand for the Notch receptor and that a few individuals with developmental delay, intellectual disability, and brain malformations have microdeletions encompassing DLL1, we hypothesized that insufficiency of DLL1 causes a human neurodevelopmental disorder. We performed exome sequencing in individuals with neurodevelopmental disorders. The cohort was identified using known Matchmaker Exchange nodes such as GeneMatcher. This method identified 15 individuals from 12 unrelated families with heterozygous pathogenic DLL1 variants (nonsense, missense, splice site, and one whole gene deletion). The most common features in our cohort were intellectual disability, autism spectrum disorder, seizures, variable brain malformations, muscular hypotonia, and scoliosis. We did not identify an obvious genotype-phenotype correlation. Analysis of one splice site variant showed an in-frame insertion of 12 bp. In conclusion, heterozygous DLL1 pathogenic variants cause a variable neurodevelopmental phenotype and multi-systemic features. The clinical and molecular data support haploinsufficiency as a mechanism for the pathogenesis of this DLL1-related disorder and affirm the importance of DLL1 in human brain development.

4.
Orthod Craniofac Res ; 22 Suppl 1: 49-55, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31074140

RESUMO

OBJECTIVES: To examine the potential role of next-generation sequencing (NGS) and genetic testing to guide preventive care in dental enamel disorders using publicly available databases to access the frequency of deleterious alleles in AMTN, AMLEX and ENAM, associated with amelogenesis imperfecta (AI). SETTING AND SAMPLE POPULATION: Public resources, including gnomAD (The Broad Institute) and the Center for Pediatric Genomic Medicine's warehouse, which together contain variants from nearly 145 000 exomes and genomes. MATERIAL & METHODS: Public resources, including sequencing data from ~145 000 exomes and genomes were queried for predicted loss of function variants with a minor allele frequency <1% in AMTN, AMLEX and ENAM. RESULTS: A total of 95 variants were identified in the combined dataset. If confirmed, this could be diagnostic for autosomal dominant AI. CONCLUSIONS: The rapid integration of NGS into clinical care allows for the expansion of genetic testing for disorders that are not currently tested routinely, including non-syndromic dental enamel disorders. A genotypic-driven diagnosis of a disorder of enamel development could impact dental care, especially in young children, including early and more frequent monitoring to prevent complications. As new gene-disease associations continue to emerge, including those for common and non-syndromic craniofacial disorders, the possibility of genomic-guided precision medicine and dentistry and the development of targeted, individualized therapeutics into standard clinical care will increase substantially.

5.
Am J Hum Genet ; 104(4): 758-766, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929739

RESUMO

By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood. KDM3B encodes for a histone demethylase and is involved in H3K9 demethylation, a crucial part of chromatin modification required for transcriptional regulation. We identified missense and truncating variants, suggesting that KDM3B haploinsufficiency is the underlying mechanism for this syndrome. By using a hybrid facial-recognition model, we show that individuals with a pathogenic variant in KDM3B have a facial gestalt, and that they show significant facial similarity compared to control individuals with ID. In conclusion, pathogenic variants in KDM3B cause a syndrome characterized by ID, short stature, and facial dysmorphism.

6.
Eur J Med Genet ; 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30472488

RESUMO

The SPECC1L protein plays a role in adherens junctions involved in cell adhesion, actin cytoskeleton organization, microtubule stabilization, spindle organization and cytokinesis. It modulates PI3K-AKT signaling and controls cranial neural crest cell delamination during facial morphogenesis. SPECC1L causative variants were first identified in individuals with oblique facial clefts. Recently, causative variants in SPECC1L were reported in a pedigree reported in 1988 as atypical Opitz GBBB syndrome. Six families with SPECC1L variants have been reported thus far. We report here eight further pedigrees with SPECC1L variants, including a three-generation family, and a further individual of a previously published family. We discuss the nosology of Teebi and GBBB, and the syndromes related to SPECC1L variants. Although the phenotype of individuals with SPECC1L mutations shows overlap with Opitz syndrome in its craniofacial anomalies, the canonical laryngeal malformations and male genital anomalies are not observed. Instead, individuals with SPECCL1 variants have branchial fistulae, omphalocele, diaphragmatic hernias, and uterus didelphis. We also point to the clinical overlap of SPECC1L syndrome with mild Baraitser-Winter craniofrontofacial syndrome: they share similar dysmorphic features (wide, short nose with a large tip, cleft lip and palate, blepharoptosis, retrognathia, and craniosynostosis), although intellectual disability, neuronal migration defect, and muscular problems remain largely specific to Baraitser-Winter syndrome. In conclusion, we suggest that patients with pathogenic variants in SPECC1L should not be described as "dominant (or type 2) Opitz GBBB syndrome", and instead should be referred to as "SPECC1L syndrome" as both disorders show distinctive, non overlapping developmental anomalies beyond facial communalities.

7.
J Child Neurol ; : 883073818811223, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486714

RESUMO

AIMP1/p43, is a noncatalytic component of the mammalian multi-tRNA synthetase complex that catalyzes the ligation of amino acids to their cognate tRNAs. AIMP1 is largely expressed in the central nervous system, where it is part of the regulatory machine of the neurofilament assembly, playing a crucial role in neuronal development and function. To date, nonsense mutations in AIMP1 have been associated with a primary neurodegenerative disorder consisting of cerebral atrophy, hypomyelination, microcephaly and epilepsy, whereas missense mutations have recently been linked to intellectual disability without neurodegeneration. Here, we report the first French-Canadian patient with a novel frameshift AIMP1 homozygous mutation (c.191_192delAA, p.Gln64Argfs*25), resulting in a severe neurodegenerative phenotype. We review and discuss the phenotypic spectrum associated with AIMP1 pathogenic variants.

8.
Hum Mutat ; 39(11): 1505-1516, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30311385

RESUMO

The variable evidence supporting gene-disease associations contributes to the difficulty of accurate variant reporting in a clinical setting. An evidence-based scoring system for evaluating the clinical validity of gene-disease associations, proposed by ClinGen, considers experimental as well as genetic evidence. De novo variants are heavily weighted, given the overall rarity in the genome and their contribution to human disease, however they are reported as "genes of unknown significance" in our center when there is insufficient evidence for the gene-disease assertion. We report a collection of 21 de novo variants in genes of unknown clinical significance ascertained via clinical testing, of which eight of 21 (38%) are predicted to cause loss of function. These genes were subjected to ClinGen scoring to assess the strength of gene-disease relationships. Using a cutoff for moderate high or strong, 10 of 21 genes now have sufficient evidence to qualify as likely pathogenic or pathogenic variants. Sharing such cases with phenotypic data is imperative to strengthen available genetic evidence to ultimately upgrade clinical validity classifications and facilitate accurate molecular diagnosis.

9.
Hum Mol Genet ; 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30285085

RESUMO

Recessively-inherited variants in AARS2 (NM_020745.2) encoding mitochondrial alanyl-tRNA synthetase (mt-AlaRS) were first described in patients presenting with fatal infantile cardiomyopathy and multiple oxidative phosphorylation defects. To date, all described patients with AARS2-related fatal infantile cardiomyopathy are united by either a homozygous or compound heterozygous c.1774C>T (p.Arg592Trp) missense founder mutation that is absent in patients with other AARS2-related phenotypes. We describe the clinical, biochemical and molecular investigations of two unrelated boys presenting with fatal infantile cardiomyopathy, lactic acidosis and respiratory failure. Oxidative histochemistry showed cytochrome c oxidase (COX)-deficient fibres in skeletal and cardiac muscle. Biochemical studies showed markedly decreased activities of mitochondrial respiratory chain complexes I and IV with a mild decrease of complex III activity in skeletal and cardiac muscle. Using next-generation sequencing, we identified a c.1738C>T (p.Arg580Trp) AARS2 variant shared by both patients that was in trans with a loss-of-function heterozygous AARS2 variant; a c.1008dupT (p.Asp337*) nonsense variant or an intragenic deletion encompassing AARS2 exons 5-7. Interestingly, our patients did not harbour the p.Arg592Trp AARS2 founder mutation. In silico modelling of the p.Arg580Trp substitution suggested a deleterious impact on protein stability and folding. We confirmed markedly decreased mt-AlaRS protein levels in patient fibroblasts, skeletal and cardiac muscle, although mitochondrial protein synthesis defects were confined to skeletal and cardiac muscle. In vitro data showed that the p.Arg580Trp variant had a minimal effect on activation, aminoacylation or misaminoacylation activities relative to wild-type mt-AlaRS, demonstrating that instability of mt-AlaRS is the biological mechanism underlying the fatal cardiomyopathy phenotype in our patients.

10.
Genet Med ; 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30008475

RESUMO

PURPOSE: We report for the first time, the use of clinical genome sequencing (GS) in an unbiased pediatric cohort. We describe the clinical validation, patient metrics, ordering patterns, results, reimbursement, and physician retrieval of results for the first consecutive 80 cases. METHODS: Clinical GS was performed for both inpatients and outpatients undergoing etiologic evaluations. Results were reported in the electronic medical record. Evidence of report retrieval by clinicians and whether interpretation was concordant with laboratory report was obtained through retrospective chart review. RESULTS: Twenty definitive diagnoses were made in 19 patients (24%; n = 80). Except for two partial gene deletions, all diagnostic variants would have been detectable by our exome methods. Surprisingly, there was no documentation of communication of results to the family in the medical record for 17.5% of patients, and in 7.5%, physician and laboratory interpretations were discordant. Average insurance reimbursement was 30.2%, with yield for commercial payers significantly higher, at 54.1%. CONCLUSIONS: The detection rate of GS is equivalent and potentially superior to exome sequencing (ES). Reimbursement rates were variable but overall satisfactory for commercial insurers, and poor for government entities. In addition, we identify opportunities for improvement in the communication of results to families, likely translatable to other tests and other institutions.

11.
Am J Hum Genet ; 102(5): 744-759, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656859

RESUMO

RORα, the RAR-related orphan nuclear receptor alpha, is essential for cerebellar development. The spontaneous mutant mouse staggerer, with an ataxic gait caused by neurodegeneration of cerebellar Purkinje cells, was discovered two decades ago to result from homozygous intragenic Rora deletions. However, RORA mutations were hitherto undocumented in humans. Through a multi-centric collaboration, we identified three copy-number variant deletions (two de novo and one dominantly inherited in three generations), one de novo disrupting duplication, and nine de novo point mutations (three truncating, one canonical splice site, and five missense mutations) involving RORA in 16 individuals from 13 families with variable neurodevelopmental delay and intellectual disability (ID)-associated autistic features, cerebellar ataxia, and epilepsy. Consistent with the human and mouse data, disruption of the D. rerio ortholog, roraa, causes significant reduction in the size of the developing cerebellum. Systematic in vivo complementation studies showed that, whereas wild-type human RORA mRNA could complement the cerebellar pathology, missense variants had two distinct pathogenic mechanisms of either haploinsufficiency or a dominant toxic effect according to their localization in the ligand-binding or DNA-binding domains, respectively. This dichotomous direction of effect is likely relevant to the phenotype in humans: individuals with loss-of-function variants leading to haploinsufficiency show ID with autistic features, while individuals with de novo dominant toxic variants present with ID, ataxia, and cerebellar atrophy. Our combined genetic and functional data highlight the complex mutational landscape at the human RORA locus and suggest that dual mutational effects likely determine phenotypic outcome.

12.
Am J Hum Genet ; 102(4): 676-684, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576217

RESUMO

Hypomyelinating leukodystrophies are genetic disorders characterized by insufficient myelin deposition during development. They are diagnosed on the basis of both clinical and MRI features followed by genetic confirmation. Here, we report on four unrelated affected individuals with hypomyelination and bi-allelic pathogenic variants in EPRS, the gene encoding cytoplasmic glutamyl-prolyl-aminoacyl-tRNA synthetase. EPRS is a bifunctional aminoacyl-tRNA synthetase that catalyzes the aminoacylation of glutamic acid and proline tRNA species. It is a subunit of a large multisynthetase complex composed of eight aminoacyl-tRNA synthetases and its three interacting proteins. In total, five different EPRS mutations were identified. The p.Pro1115Arg variation did not affect the assembly of the multisynthetase complex (MSC) as monitored by affinity purification-mass spectrometry. However, immunoblot analyses on protein extracts from fibroblasts of the two affected individuals sharing the p.Pro1115Arg variant showed reduced EPRS amounts. EPRS activity was reduced in one affected individual's lymphoblasts and in a purified recombinant protein model. Interestingly, two other cytoplasmic aminoacyl-tRNA synthetases have previously been implicated in hypomyelinating leukodystrophies bearing clinical and radiological similarities to those in the individuals we studied. We therefore hypothesized that leukodystrophies caused by mutations in genes encoding cytoplasmic aminoacyl-tRNA synthetases share a common underlying mechanism, such as reduced protein availability, abnormal assembly of the multisynthetase complex, and/or abnormal aminoacylation, all resulting in reduced translation capacity and insufficient myelin deposition in the developing brain.

13.
BMC Med Genet ; 19(1): 41, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523099

RESUMO

BACKGROUND: Ectodermal dysplasias (ED) are a group of diseases that affects the development or function of the teeth, hair, nails and exocrine and sebaceous glands. One type of ED, ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC or Hay-Wells syndrome), is an autosomal dominant disease characterized by the presence of skin erosions affecting the palms, soles and scalp. Other clinical manifestations include ankyloblepharon filiforme adnatum, cleft lip, cleft palate, craniofacial abnormalities and ectodermal defects such as sparse wiry hair, nail changes, dental changes, and subjective hypohydrosis. CASE PRESENTATION: We describe a patient presenting clinical features reminiscent of AEC syndrome in addition to recurrent infections suggestive of immune deficiency. Genetic testing for TP63, IRF6 and RIPK4 was negative. Microarray analysis revealed a 2 MB deletion on chromosome 1 (1q21.1q21.2). Clinical exome sequencing uncovered compound heterozygous variants in CHUK; a maternally-inherited frameshift variant (c.1365del, p.Arg457Aspfs*6) and a de novo missense variant (c.1388C > A, p.Thr463Lys) on the paternal allele. CONCLUSIONS: To our knowledge, this is the fourth family reported with CHUK-deficiency and the second patient with immune abnormalities. This is the first case of CHUK-deficiency with compound heterozygous pathogenic variants, including one variant that arose de novo. In comparison to cases found in the literature, this patient demonstrates a less severe phenotype than previously described.

14.
NPJ Genom Med ; 3: 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449963

RESUMO

Genetic disorders are a leading cause of morbidity and mortality in infants in neonatal and pediatric intensive care units (NICU/PICU). While genomic sequencing is useful for genetic disease diagnosis, results are usually reported too late to guide inpatient management. We performed an investigator-initiated, partially blinded, pragmatic, randomized, controlled trial to test the hypothesis that rapid whole-genome sequencing (rWGS) increased the proportion of NICU/PICU infants receiving a genetic diagnosis within 28 days. The participants were families with infants aged <4 months in a regional NICU and PICU, with illnesses of unknown etiology. The intervention was trio rWGS. Enrollment from October 2014 to June 2016, and follow-up until November 2016. Of all, 26 female infants, 37 male infants, and 2 infants of undetermined sex were randomized to receive rWGS plus standard genetic tests (n = 32, cases) or standard genetic tests alone (n = 33, controls). The study was terminated early due to loss of equipoise: 73% (24) controls received genomic sequencing as standard tests, and 15% (five) controls underwent compassionate cross-over to receive rWGS. Nevertheless, intention to treat analysis showed the rate of genetic diagnosis within 28 days of enrollment (the primary end-point) to be higher in cases (31%, 10 of 32) than controls (3%, 1 of 33; difference, 28% [95% CI, 10-46%]; p = 0.003). Among infants enrolled in the first 25 days of life, the rate of neonatal diagnosis was higher in cases (32%, 7 of 22) than controls (0%, 0 of 23; difference, 32% [95% CI, 11-53%];p = 0.004). Median age at diagnosis (25 days [range 14-90] in cases vs. 130 days [range 37-451] in controls) and median time to diagnosis (13 days [range 1-84] in cases, vs. 107 days [range 21-429] in controls) were significantly less in cases than controls (p = 0.04). In conclusion, rWGS increased the proportion of NICU/PICU infants who received timely diagnoses of genetic diseases.

15.
Am J Med Genet A ; 176(2): 359-367, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274205

RESUMO

Arthrogryposis multiplex congenita affects approximately 1 in 3,000 individuals of different ethnic backgrounds and displays an equal incidence in males and females. The underlying mechanism for congenital contracture of the joints is decreased fetal movement during intrauterine development. This disorder is associated with over 400 medical conditions and 350 known genes that display considerable variability in phenotypic expression. In this report, four fetal or perinatal autopsy cases of arthrogryposis were studied by gross morphology, microscopic histopathologic examination, and whole genome sequencing of postmortem DNA. Two stillborn sibling fetuses with arthrogryposis, pterygia, and amyoplasia had compound heterozygous pathogenic variants in NEB. A neonate with a histopathologic diagnosis of nemaline myopathy had a heterozygous de novo pathogenic variant in ACTA1. Another stillborn infant with pterygia and arthrogryposis had a heterozygous de novo likely pathogenic variant in BICD2. These cases demonstrate the utility of whole genome sequencing as the principal diagnostic method of lethal forms of skeletal muscle disorders that present with arthrogryposis and muscle amyoplasia/hypoplasia. Molecular diagnosis provides an opportunity for studying patterns of inheritance and for family counseling concerning future pregnancies.

17.
BMC Med Genet ; 18(1): 124, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096607

RESUMO

BACKGROUND: Defects in the human glycosylphosphatidylinositol anchor biosynthetic pathway are associated with inherited glycosylphosphatidylinositol (GPI)-deficiencies characterized by a broad range of clinical phenotypes including multiple congenital anomalies, dysmorphic faces, developmental delay, hypotonia, and epilepsy. Biallelic variants in PIGN, encoding phosphatidylinositol-glycan biosynthesis class N have been recently associated with multiple congenital anomalies hypotonia seizure syndrome. CASE PRESENTATION: Our patient is a 2 year old male with hypotonia, global developmental delay, and focal epilepsy. Trio whole-exome sequencing revealed heterozygous variants in PIGN, c.181G > T (p.Glu61*) and c.284G > A (p.Arg95Gln). Analysis of FLAER and anti-CD59 by flow-cytometry demonstrated a shift in this patient's granulocytes, confirming a glycosylphosphatidylinositol-biosynthesis defect, consistent with PIGN-related disease. CONCLUSIONS: To date, a total of 18 patients have been reported, all but 2 of whom have congenital anomalies and/or obvious dysmorphic features. Our patient has no significant dysmorphic features or multiple congenital anomalies, which is consistent with recent reports linking non-truncating variants with a milder phenotype, highlighting the importance of functional studies in interpreting sequence variants.


Assuntos
Anormalidades Múltiplas/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença/genética , Hipotonia Muscular/genética , Mutação , Fosfotransferases/genética , Pré-Escolar , Análise Mutacional de DNA , Epilepsias Parciais/genética , Exoma/genética , Humanos , Masculino
18.
JAMA Neurol ; 74(10): 1228-1236, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28806457

RESUMO

Importance: Knowing the range of symptoms seen in patients with a missense or loss-of-function variant in KCNB1 and how these symptoms correlate with the type of variant will help clinicians with diagnosis and prognosis when treating new patients. Objectives: To investigate the clinical spectrum associated with KCNB1 variants and the genotype-phenotype correlations. Design, Setting, and Participants: This study summarized the clinical and genetic information of patients with a presumed pathogenic variant in KCNB1. Patients were identified in research projects or during clinical testing. Information on patients from previously published articles was collected and authors contacted if feasible. All patients were seen at a clinic at one of the participating institutes because of presumed genetic disorder. They were tested in a clinical setting or included in a research project. Main Outcomes and Measures: The genetic variant and its inheritance and information on the patient's symptoms and characteristics in a predefined format. All variants were identified with massive parallel sequencing and confirmed with Sanger sequencing in the patient. Absence of the variant in the parents could be confirmed with Sanger sequencing in all families except one. Results: Of 26 patients (10 female, 15 male, 1 unknown; mean age at inclusion, 9.8 years; age range, 2-32 years) with developmental delay, 20 (77%) carried a missense variant in the ion channel domain of KCNB1, with a concentration of variants in region S5 to S6. Three variants that led to premature stops were located in the C-terminal and 3 in the ion channel domain. Twenty-one of 25 patients (84%) had seizures, with 9 patients (36%) starting with epileptic spasms between 3 and 18 months of age. All patients had developmental delay, with 17 (65%) experiencing severe developmental delay; 14 (82%) with severe delay had behavioral problems. The developmental delay was milder in 4 of 6 patients with stop variants and in a patient with a variant in the S2 transmembrane element rather than the S4 to S6 region. Conclusions and Relevance: De novo KCNB1 missense variants in the ion channel domain and loss-of-function variants in this domain and the C-terminal likely cause neurodevelopmental disorders with or without seizures. Patients with presumed pathogenic variants in KCNB1 have a variable phenotype. However, the type and position of the variants in the protein are (imperfectly) correlated with the severity of the disorder.


Assuntos
Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Canais de Potássio Shab/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Imagem por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Fenótipo , Adulto Jovem
19.
Front Pediatr ; 5: 71, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469999

RESUMO

Activated PI3K-δ syndrome refers to a recently described primary immunodeficiency syndrome consisting of recurrent sinopulmonary infections, lymphadenopathy, mucosal lymphoid aggregates, increased susceptibility to Epstein-Barr virus and cytomegalovirus, and increased incidence of B-cell lymphomas. Variants in PIK3CD, which encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta isoform, enhance membrane association and kinase activity, resulting in increased signal transduction through the PI3K-Akt pathway. Whole-exome sequencing revealed a pathogenic PIK3CD variant in a patient with history of immunologic impairment, recurrent sinopulmonary infections, and lymphoid hyperplasia presenting as intussusception. This case illustrates that while lymphoid hyperplasia secondary to immunodeficiency is most often unsurprising and non-threatening, it can present as an emergency-like intussusception.

20.
Hum Mutat ; 38(5): 511-516, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28185376

RESUMO

Deleterious variants in the same gene present in two or more families with overlapping clinical features provide convincing evidence of a disease-gene association; this can be a challenge in the study of ultrarare diseases. To facilitate the identification of additional families, several groups have created "matching" platforms. We describe four individuals from three unrelated families "matched" by GeneMatcher and MatchMakerExchange. Individuals had microcephaly, developmental delay, epilepsy, and recessive mutations in TRIT1. A single homozygous mutation in TRIT1 associated with similar features had previously been reported in one family. The identification of these individuals provides additional evidence to support TRIT1 as the disease-causing gene and interprets the variants as "pathogenic." TRIT1 functions to modify mitochondrial tRNAs and is necessary for protein translation. We show that dysfunctional TRIT1 results in decreased levels of select mitochondrial proteins. Our findings confirm the TRIT1 disease association and advance the phenotypic and molecular understanding of this disorder.


Assuntos
Alquil e Aril Transferases/genética , Alelos , Genes Recessivos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Pré-Escolar , Facies , Feminino , Testes Genéticos , Homozigoto , Humanos , Imagem por Ressonância Magnética , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA