Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Eur J Sport Sci ; : 1-10, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32223385

RESUMO

Introduction: Both ischaemic preconditioning (IPC) and muscle heat maintenance can be effective in enhancing repeated-sprint performance (RSA) when applied individually, acting mechanisms of these interventions, however, likely differ. It is unclear if, when combined, these interventions could further improve RSA. Methods: Eleven trained cyclists undertook experimental test sessions, whereby IPC (4 × 5-min at 220 mmHg) and SHAM (4 × 5-min at 20 mmHg) were each performed on two separate visits, each combined with either passive muscle heating or thermoneutral insulation prior to an "all-out" repeated-sprint task (10 × 6-s sprints with 24-s recovery). Primary outcome measures were peak and average power output (W), whist secondary measures were muscular activation and muscular oxygenation, measured via Electromyography (EMG) and Near-infrared spectroscopy (NIRS), respectively. Results: IPC did not enhance peak [6 (-14-26)W; P = 0.62] or average [12 (-7-31)W; P = 0.28] power output versus SHAM. Additionally, no performance benefits were observed when increasing muscle temperature in combination with IPC [5 (-14-19) watts; P = 0.67], or in isolation to IPC [9 (-9-28)W; P = 0.4] versus SHAM. No changes in EMG or microvascular changes were present (P > 0.05, respectively) between conditions. Conclusion: Overall, neither IPC, muscle heating, or a combination of both enhances RSA cycling performance in trained individuals.Highlights Neither IPC, passive muscle heating, nor combining both strategies, resulted in significant improvements peak or average power output during RSA performance.No main effect of condition was observed on neuromuscular (EMG) or microvascular (NIRS) function during RSA performance.After an optimised, intense warm-up, RSA performance is therefore unlikely further enhanced by IPC, passive heating, or a combining both strategies, versus a SHAM condition in trained cyclists.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32268472

RESUMO

The aim of this study was to assess the effect of exercise intensity on the thermal sensory function of active and inactive limbs. In a randomised and counterbalanced manner, 13 healthy young male participants (25 ± 6 years, 1.8 ± 0.1 m, 77 ± 6 kg) conducted: (1) 30-min low-intensity (50% heart rate maximum, HRmax; LOW) and (2) 30-min high-intensity (80% HRmax; HIGH) cycling exercises, and (3) 30 min of seated rest (CONTROL). Before, immediately after, and 1 h after, each intervention, thermal sensory functions of the non-dominant dorsal forearm and posterior calf were examined by increasing local skin temperature (1 °C/s) to assess perceptual heat sensitivity and pain thresholds. Relative to pre-exercise, forearm heat sensitivity thresholds were increased immediately and 1 hr after HIGH, but there were no changes after LOW exercise or during CONTROL (main effect of trial; p = 0.017). Relative to pre-exercise, calf heat sensitivity thresholds were not changed after LOW or HIGH exercise or during CONTROL (main effect of trial; p = 0.629). There were no changes in calf (main effect of trial; p = 0.528) or forearm (main effect of trial; p = 0.088) heat pain thresholds after exercise in either LOW or HIGH or CONTROL. These results suggest that cutaneous thermal sensitivity function of an inactive limb is only reduced after higher intensity exercise but is not changed in a previously active limb after exercise. Exercise does not affect heat pain sensitivity in either active or inactive limbs.

3.
J Alzheimers Dis ; 74(2): 691-697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32083587

RESUMO

BACKGROUND: Physicians are cautious to prescribe antihypertensive drugs in frail older adults because of the potential adverse effects, especially in those with cognitive complaints. Lifestyle aspects might provide safe targets to lower blood pressure in older adults. OBJECTIVE: Our goal was to evaluate the associations between activity patterns and blood pressure in memory clinic patients. METHODS: We used an observational cross-sectional study to measure activity patterns with the ActivPAL accelerometer, and simultaneous home blood pressure levels in memory clinic patients (age range 51-87 years old). Office blood pressure was assessed during routine clinical practice. RESULTS: 41 patients (mean age of 74.3 (7.7) years of age, 46% female) were included. Sedentary parameters were associated with higher mean home blood pressure, with the strongest correlation between more prolonged sitting bouts and higher SBP (r = 0.58, p < .0001). Physical activity parameters were negatively associated with mean home blood pressure. Adjusted regression estimates remained significant, showing, e.g., a 4.5 (95% CI = 1.6;7.4) mmHg increase in SBP for every hour of sitting per day and a -1.0 (95% CI = -1.8;-0.2) mmHg decrease in DBP for every additional 1000 steps per day. No strong correlations were found between any of the activity pattern variables and office blood pressure. CONCLUSION: Associations between activity pattern variables and blood pressure were only found with home blood pressure measurements, not with office measurements. Longitudinal evaluations of these associations are now needed to explore if reducing prolonged sedentary bouts and increasing step count indeed serve as safe targets to lower blood pressure.

4.
BMC Public Health ; 20(1): 220, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050958

RESUMO

BACKGROUND: Sedentary behavior (SB) is associated with increased risks of detrimental health outcomes. Few studies have explored correlates of SB in physically active individuals. Furthermore, SB correlates may depend on settings of SB, such as occupation, transportation and leisure time sitting. This study aims to identify subject-, lifestyle- and health-related correlates for total SB and different SB domains: transportation, occupation, and leisure time. METHODS: Dutch participants were recruited between June, 2015 and December, 2016. Participant characteristics (i.e. age, sex, weight, height, marital status, education level, employment), lifestyle (sleep, smoking, alcohol consumption, physical activity) and medical history were collected via an online questionnaire. SB was assessed using the Sedentary Behavior Questionnaire and estimated for 9 different activities during weekdays and weekend days. Logistic regression was used to calculate odds ratios and 95% confidence intervals for the association between correlates and SB. Total SB was dichotomized at > 8 h/day and > 10 h/day, and being sedentary during transportation, occupation and leisure time at the 75th percentile (60 min/day, 275 min/day and 410 min/day, respectively). RESULTS: In total, 8471 participants (median age 55, 55% men) were included of whom 86% met the physical activity guidelines. Median SB was 9.1 h/day (Q25 6.3-Q75 12.0) during weekdays and 7.4 h/day (Q25 5.5-Q75 9.5) during weekend days. SB was most prevalent during leisure time (5.3 h/day; Q25 3.9-Q75 6.8), followed by occupation (2 h/day; Q25 0.1-Q75 4.6) and transportation (0.5 h/day; Q25 0.2-Q75 1.0). Younger age, male sex, being unmarried, higher education, employment and higher BMI were significantly related to higher levels of total SB. Younger age, male sex, employment, and higher BMI increased the odds for high SB volumes during occupation and transportation. Higher education, being unmarried and smoking status were positively associated with high volumes of occupational SB only, whereas older age, being unmarried, unemployment, higher BMI and poor health were positively linked to leisure time SB. CONCLUSIONS: SB is highly prevalent in physically active individuals, with SB during leisure time as the most important contributor. Correlates for high volumes of SB vary substantially across SB domains, emphasizing the difficulty to target this unhealthy lifestyle.


Assuntos
Comportamento Sedentário , Estudos Transversais , Feminino , Humanos , Atividades de Lazer , Masculino , Pessoa de Meia-Idade , Países Baixos , Ocupações/estatística & dados numéricos , Fatores de Risco , Inquéritos e Questionários , Fatores de Tempo , Transportes/estatística & dados numéricos
5.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R743-R750, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32022579

RESUMO

Chronic changes in left ventricular (LV) hemodynamics, such as those induced by increased afterload (i.e., hypertension), mediate changes in LV function. This study examined the proof of concept that 1) the LV longitudinal strain (ε)-volume loop is sensitive to detecting an acute increase in afterload, and 2) these effects differ between healthy young versus older men. Thirty-five healthy male volunteers were recruited, including 19 young (24 ± 2 yr) and 16 older participants (67 ± 5 yr). Tests were performed before, during, and after 10-min recovery from acute manipulation of afterload. Real-time hemodynamic data were obtained and LV longitudinal ε-volume loops were calculated from four-chamber images using two-dimensional echocardiography. Inflation of the anti-gravity (anti-G) suit resulted in an immediate increase in heart rate, blood pressure, and systemic vascular resistance and a decrease in stroke volume (all P < 0.05). This was accompanied by a decrease in LV peak ε, slower slope of the ε-volume relationship during early diastole, and an increase in uncoupling (i.e., compared with systole; little change in ε per volume decline during early diastole and large changes in ε per volume decline during late diastole) (all P < 0.05). All values returned to baseline levels after recovery (all P > 0.05). Manipulation of cardiac hemodynamics caused comparable effects in young versus older men (all P > 0.05). Acute increases in afterload immediately change the diastolic phase of the LV longitudinal ε-volume loop in young and older men. This supports the potency of the LV longitudinal ε-volume loop to provide novel insights into dynamic cardiac function in humans in vivo.

7.
Eur J Appl Physiol ; 120(3): 603-612, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31932877

RESUMO

PURPOSE: Remote ischaemic preconditioning (RIPC) refers to the protection conferred to tissues and organs via brief periods of ischaemia in a remote vascular territory, including the brain. Recent studies in humans report that RIPC provides neuroprotection against recurrent (ischaemic) stroke. To better understand the ability of RIPC to improve brain health, the present study explored the potential for RIPC to acutely improve cerebrovascular function. METHODS: Eleven young healthy (females n = 6, age; 28.1 ± 3.7 years) and 9 older individuals (females n = 4, age 52.5 ± 6.7 years) at increased risk for stroke (cardiovascular disease risk factors) underwent assessments of cerebrovascular function, assessed by carbon dioxide (CO2) reactivity and cerebral autoregulation during normo- and hypercapnia (5% CO2) following 40 mins of bilateral arm RIPC or a sham condition. Squat-to-stand manoeuvres were performed to induce changes in blood pressure to assess cerebral autoregulation (0.10 Hz) and analysed via transfer function. RESULTS: We found no change in middle cerebral artery velocity or blood pressure across 40 mins of RIPC. Application of RIPC resulted in no change in CO2 reactivity slopes (sham vs RIPC, 1.97 ± 0.88 vs 2.06 ± 0.69 cm/s/mmHg P = 0.61) or parameters of cerebral autoregulation during normocapnia (sham vs RIPC, normalised gain%, 1.27 ± 0.25 vs 1.22 ± 0.35, P = 0.46). CONCLUSION: This study demonstrates that a single bout of RIPC does not influence cerebrovascular function acutely in healthy individuals, or those at increased cardiovascular risk. Given the previously reported protective role of RIPC on stroke recurrence in humans, it is possible that repeated bouts of RIPC may be necessary to impart beneficial effects on cerebrovascular function.

8.
Sports Med ; 50(2): 403-413, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31529300

RESUMO

BACKGROUND: Besides physical activity as a target for dementia prevention, sedentary behaviour is hypothesized to be a potential target in its own right. The rising number of persons with dementia and lack of any effective treatment highlight the urgency to better understand these modifiable risk factors. Therefore, we aimed to investigate whether higher levels of sedentary behaviour are associated with reduced global cognitive functioning and slower cognitive decline in older persons without dementia. METHODS: We used five population cohorts from Greece, Australia, USA, Japan, and Singapore (HELIAD, PATH, SALSA, SGS, and SLAS2) from the Cohort Studies of Memory in an International Consortium. In a coordinated analysis, we assessed the relationship between sedentary behaviour and global cognitive function with the use of linear mixed growth model analysis (mean follow-up range of 2.0-8.1 years). RESULTS: Baseline datasets combined 10,450 older adults without dementia with a mean age range between cohorts of 66.7-75.1 years. After adjusting for multiple covariates, no cross-sectional association between sedentary behaviour and cognition was found in four studies. One association was detected where more sedentary behaviour was cross-sectionally linked to higher cognition levels (SLAS2, B = 0.118 (0.075; 0.160), P < 0.001). Longitudinally, there were no associations between baseline sedentary behaviour and cognitive decline (P > 0.05). CONCLUSIONS: Overall, these results do not suggest an association between total sedentary time and lower global cognition in older persons without dementia at baseline or over time. We hypothesize that specific types of sedentary behaviour may differentially influence cognition which should be investigated further. For now, it is, however, too early to establish undifferentiated sedentary time as a potential effective target for minimizing cognitive decline in older adults without dementia.

9.
J Clin Endocrinol Metab ; 105(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31858120

RESUMO

BACKGROUND: Although major improvements are achieved after cure of Cushing syndrome (CS), fatigue and decreased quality of life persist. This is the first study to measure aerobic exercise capacity in patients in remission of CS for more than 4 years in comparison with matched controls, and to investigate whether the reduction in exercise capacity is related to alterations in muscle tissue. METHODS: Seventeen patients were included. A control individual, matched for sex, estrogen status, age, body mass index, smoking, ethnicity, and physical activity level was recruited for each patient. Maximal aerobic capacity (VO2peak) was assessed during incremental bicycle exercise to exhaustion. In 8 individually matched patients and controls, a percutaneous muscle biopsy was obtained and measures were made of cross-sectional areas, capillarization, and oxphos complex IV (COXIV) protein content as an indicator of mitochondrial content. Furthermore, protein content of endothelial nitric oxide synthase (eNOS) and eNOS phosphorylated on serine1177 and of the NAD(P)H-oxidase subunits NOX2, p47phox, and p67phox were measured in the microvascular endothelial layer. FINDINGS: Patients showed a lower mean VO2peak (SD) (28.0 [7.0] vs 34.8 [7.9] ml O2/kg bw/min, P < .01), maximal workload (SD) (176 [49] vs 212 [67] watt, P = .01), and oxygen pulse (SD) (12.0 [3.7] vs 14.8 [4.2] ml/beat, P < .01) at VO2peak. No differences were seen in muscle fiber type-specific cross-sectional area, capillarization measures, mitochondrial content, and protein content of eNOS, eNOS-P-ser1177, NOX2, p47phox, and p67phox. INTERPRETATION: Because differences in muscle fiber and microvascular outcome measures are not statistically significant, we hypothesize that cardiac dysfunction, seen in active CS, persists during remission and limits blood supply to muscles.

10.
Physiol Rep ; 7(24): e14304, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31883220

RESUMO

Exposure to extreme cold environments is potentially life-threatening. However, the world record holder of full-body ice immersion has repeatedly demonstrated an extraordinary tolerance to extreme cold. We aimed to explore thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion. We continuously measured gastrointestinal temperature (Tgi ), skin temperature (Tskin), blood pressure, and heart rate (HR). Oxygen consumption (VO2 ) was measured at rest, and after 45 and 88 min of ice immersion, in order to calculate the metabolic heat production. Tskin dropped significantly (28-34°C to 4-15°C) and VO2 doubled (5.7-11.3 ml kg-1  min-1 ), whereas Tgi (37.6°C), HR (72 bpm), and mean arterial pressure (106 mmHg) remained stable during the first 30 min of cold exposure. During the remaining of the trial, Tskin and VO2 remained stable, while Tgi gradually declined to 37.0°C and HR and mean arterial blood pressure increased to maximum values of 101 bpm and 115 mmHg, respectively. Metabolic heat production in rest was 169 W and increased to 321 W and 314 W after 45 and 80 min of ice immersion. Eighty-eight minutes of full-body ice immersion resulted in minor changes of Tgi and cardiovascular responses, while Tskin and VO2 changed markedly. These findings may suggest that our participant can optimize his thermoregulatory, metabolic, and cardiovascular responses to challenge extreme cold exposure.

11.
J Am Heart Assoc ; 8(21): e013764, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31623506

RESUMO

Background Low-grade inflammation, largely mediated by monocyte-derived macrophages, contributes to atherosclerosis. Sedentary behavior is associated with atherosclerosis and cardiovascular diseases (CVD). We examined whether reducing sedentary behavior and improving walking time improves monocyte inflammatory phenotype in subjects with increased cardiovascular risk. Methods and Results Across 2 waves, 16 individuals with increased cardiovascular risk performed a 16-week intervention study (age 64±6 years, body mass index 29.9±4.3 kg/m2), using a device with vibration feedback to promote physical activity. Before and after intervention, we objectively examined physical activity (ActivPAL), cytokine production capacity after ex vivo stimulation in peripheral blood mononuclear cells, metabolism of peripheral blood mononuclear cells, circulating cytokine concentrations, and monocyte immunophenotype. Overall, no significant increase in walking time was found (1.9±0.7 to 2.2±1.2 h/day, P=0.07). However, strong, inverse correlations were observed between the change in walking time and the change in production of interleukin (IL)-1ß, IL-6, IL-8, and IL-10 after lipopolysaccharide stimulation (rs=-0.655, -0.844, -0.672, and -0.781, respectively, all P<0.05). After intervention optimization based on feedback from wave 1, participants in wave 2 (n=8) showed an increase in walking time (2.2±0.8 to 3.0±1.3 h/day, P=0.001) and attenuated cytokine production of IL-6, IL-8, and IL-10 (all P<0.05). Glycolysis (P=0.08) and maximal OXPHOS (P=0.04) of peripheral blood mononuclear cells decreased after intervention. Lower IL-6 concentrations (P=0.06) and monocyte percentages (P<0.05), but no changes in monocyte subsets were found. Conclusions Successfully improving walking time shifts innate immune function towards a less proinflammatory state, characterized by a lower capacity to produce inflammatory cytokines, in individuals with increased cardiovascular risk. Clinical Trial Registration Information URL: http://www.trialregister.nl. Unique identifier: NTR6387.

12.
Eur J Endocrinol ; 181(6): 659-669, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31614332

RESUMO

Background: Remote ischaemic preconditioning (rIPC) may improve cardiac/cerebrovascular outcomes of ischaemic events. Ischaemic damage caused by cardiovascular/cerebrovascular disease are primary causes of mortality in type 2 diabetes mellitus (T2DM). Due to the positive effects from a bout of rIPC within the vasculature, we explored if daily rIPC could improve endothelial and cerebrovascular function. The aim of this pilot study was to obtain estimates for the change in conduit artery and cerebrovascular function following a 7-day rIPC intervention. Methods: Twenty-one patients with T2DM were randomly allocated to either 7-day daily upper-arm rIPC (4 × 5 min 220 mmHg, interspaced by 5-min reperfusion) or control. We examined peripheral endothelial function using flow mediated dilation (FMD) before and after ischemia-reperfusion injury (IRI, 20 min forearm ischaemic-20 min reperfusion) and cerebrovascular function, assessed by dynamic cerebral autoregulation (dCA) at three time points; pre, post and 8 days post intervention. Results: For exploratory purposes, we performed statistical analysis on our primary comparison (pre-to-post) to provide an estimate of the change in the primary and secondary outcome variables. Using pre-intervention data as a covariate, the change from pre-post in FMD was 1.3% (95% CI: 0.69 to 3.80; P = 0.09) and 0.23 %cm/s %/mmHg mmHg/% (-0.12, 0.59; P = 0.18) in dCA normalised gain with rIPC versus control. Based upon this, a sample size of 20 and 50 for FMD and normalised gain, respectively, in each group would provide 90% power to detect statistically significant (P < 0.05) between-group difference in a randomised controlled trial. Conclusion: We provide estimates of sample size for a randomised control trial exploring the impact of daily rIPC for 7 days on peripheral endothelial and cerebrovascular function. The directional changes outline from our pilot study suggest peripheral endothelial function can be enhanced by daily rIPC in patients with T2DM.

13.
Eur J Clin Invest ; 49(12): e13180, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31659743

RESUMO

BACKGROUND: Patients with primary aldosteronism (PA) experience more cardiovascular events compared to patients with essential hypertension (EHT), independent from blood pressure levels. In animals, mineralocorticoid receptor antagonists limit ischaemia-reperfusion (IR) injury by increasing extracellular adenosine formation and adenosine receptor stimulation. Adenosine is an endogenous compound with profound cardiovascular protective effects. Firstly, we hypothesized that patients with PA have lower circulating adenosine levels which might contribute to the observed increased cardiovascular risk. Secondly, we hypothesized that by this mechanism, patients with PA are more susceptible to IR compared to patients with EHT. DESIGN: In our prospective study in 20 patients with PA and 20 patients with EHT, circulating adenosine was measured using a pharmacological blocker solution that halts adenosine metabolism after blood drawing. Brachial artery flow-mediated dilation (FMD) before and after forearm IR was used as a well-established method to study IR injury. RESULTS: Patients with PA had a 33% lower adenosine level compared to patients with EHT (15.3 [13.3-20.4] vs 22.7 [19.4-36.8] nmol/L, respectively, P < .01). The reduction in FMD after IR, however, did not differ between patients with PA and patients with EHT (-1.0 ± 2.9% vs -1.6 ± 1.6%, respectively, P = .52). CONCLUSIONS: As adenosine receptor stimulation induces various powerful protective cardiovascular effects, its lower concentration in patients with PA might be an important novel mechanism that contributes to their increased cardiovascular risk. We suggest that modulation of the adenosine metabolism is an exciting novel pharmacological opportunity to limit cardiovascular risk in patients with PA that needs further exploration.

14.
Circulation ; 140(10): 804-814, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31401842

RESUMO

BACKGROUND: Blood concentrations of cardiac troponin above the 99th percentile are a key criterion for the diagnosis of acute myocardial injury and infarction. Troponin concentrations, even below the 99th percentile, predict adverse outcomes in patients and the general population. Elevated troponin concentrations are commonly observed after endurance exercise, but the clinical significance of this increase is unknown. We examined the association between postexercise troponin I concentrations and clinical outcomes in long-distance walkers. METHODS: We measured cardiac troponin I concentrations in 725 participants (61 [54-69] yrs) before and immediately after 30 to 55 km of walking. We tested for an association between postexercise troponin I concentrations above the 99th percentile (>0.040 µg/L) and a composite end point of all-cause mortality and major adverse cardiovascular events (myocardial infarction, stroke, heart failure, revascularization, or sudden cardiac arrest). Continuous variables were reported as mean ± standard deviation when normally distributed or median [interquartile range] when not normally distributed. RESULTS: Participants walked 8.3 [7.3-9.3] hours at 68±10% of their maximum heart rate. Baseline troponin I concentrations were >0.040 µg/L in 9 participants (1%). Troponin I concentrations increased after walking (P<.001), with 63 participants (9%) demonstrating a postexercise troponin concentration >0.040 µg/L. During 43 [23-77] months of follow-up, 62 participants (9%) experienced an end point; 29 died and 33 had major adverse cardiovascular events. Compared with 7% with postexercise troponin I ≤0.040 µg/L (log-rank P<.001), 27% of participants with postexercise troponin I concentrations >0.040 µg/L experienced an end point. The hazard ratio was 2.48 (95% CI, 1.29-4.78) after adjusting for age, sex, cardiovascular risk factors (hypertension, hypercholesterolemia or diabetes mellitus), cardiovascular diseases (myocardial infarction, stroke, or heart failure), and baseline troponin I concentrations. CONCLUSIONS: Exercise-induced troponin I elevations above the 99th percentile after 30 to 55 km of walking independently predicted higher mortality and cardiovascular events in a cohort of older long-distance walkers. Exercise-induced increases in troponin may not be a benign physiological response to exercise, but an early marker of future mortality and cardiovascular events.

15.
Physiol Rep ; 7(16): e14190, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31423757

RESUMO

Breaking up prolonged sitting with physical activity (PA) breaks prevents conduit artery dysfunction. However, the optimal break strategy to achieve this, in terms of the frequency or duration of PA, is not known. This study assessed the effect of breaking up sitting with different PA break strategies on lower limb peripheral artery endothelial function. Fifteen participants (10 male, 35.8 ± 10.2 years, BMI: 25.5 ± 3.2 kg m-2 ) completed, on separate days, three 4-h conditions in a randomized order: (1) uninterrupted sitting (SIT), (2) sitting with 2-min light-intensity walking breaks every 30 min (2WALK), or (3) sitting with 8-min light-intensity walking breaks every 2 h (8WALK). At baseline and 4 h, superficial femoral artery function (flow-mediated dilation; FMD), blood flow, and shear rate (SR) were assessed using Doppler ultrasound. For each condition, the change in outcome variables was calculated and data were statistically analyzed using a linear mixed model. There was no significant main effect for the change in FMD (P = 0.564). A significant main effect was observed for the change in blood flow (P = 0.022), with post hoc analysis revealing a greater reduction during SIT (-42.7 ± 14.2 mL·min) compared to 8WALK (0.45 ± 17.7 mL·min; P = 0.012). There were no significant main effects for mean, antegrade, or retrograde SR (P > 0.05). Superficial femoral artery blood flow, but not FMD, was reduced following uninterrupted sitting. This decline in blood flow was prevented with longer duration, less frequent walking breaks rather than shorter, more frequent breaks suggesting the dose (duration and frequency) of PA may influence the prevention of sitting-induced decreases in blood flow.

16.
J Appl Physiol (1985) ; 127(2): 415-422, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31246556

RESUMO

Aortic valve replacement (AVR) leads to remodeling of the left ventricle (LV). Adopting a novel technique to examine dynamic LV function, our study explored whether post-AVR changes in dynamic LV function and/or changes in aortic valve characteristics are associated with LV mass regression during follow-up. We retrospectively analyzed 30 participants with severe aortic stenosis who underwent standard transthoracic echocardiographic assessment before AVR [88 (IQR or interquartile range: 22-143) days], post-AVR [13 (6-22) days], and during follow-up [455 (226-907) days]. We assessed standard measures of LV structure, function, and aortic valve characteristics. Novel insight into dynamic LV function was provided through a four-chamber image by examination of the temporal relation between LV longitudinal strain (ε) and volume (ε-volume loops), representing the contribution of LV mechanics to volume change. AVR resulted in immediate changes in structural valve characteristics, alongside a reduced LV longitudinal peak ε and improved coherence between the diastolic and systolic part of the ε-volume loop (all P < 0.05). Follow-up revealed a decrease in LV mass (P < 0.05) and improvements in LV ejection fraction and LV longitudinal peak ε (P < 0.05). A significant relationship was present between decline in LV mass during follow-up and post-AVR improvement in coherence of the ε-volume loops (r = 0.439, P = 0.03), but not with post-AVR changes in aortic valve characteristics or LV function (all P > 0.05). We found that post-AVR improvements in dynamic LV function are related to long-term remodeling of the LV. This highlights the potential importance of assessing dynamic LV function for cardiac adaptations in vivo.NEW & NOTEWORTHY Combining temporal measures of left ventricular longitudinal strain and volume (strain-volume loop) provides novel insights in dynamic cardiac function. In patients with aortic stenosis who underwent aortic valve replacement, postsurgical changes in the strain-volume loop are associated with regression of left ventricular mass during follow-up. This provides novel insight into the relation between postsurgery changes in cardiac hemodynamics and long-term structural remodeling, but also supports the potential utility of the assessment of dynamic cardiac function.

18.
Eur Heart J ; 40(30): 2534-2547, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31211361

RESUMO

Endothelial dysfunction is involved in the development of atherosclerosis, which precedes asymptomatic structural vascular alterations as well as clinical manifestations of cardiovascular disease (CVD). Endothelial function can be assessed non-invasively using the flow-mediated dilation (FMD) technique. Flow-mediated dilation represents an endothelium-dependent, largely nitric oxide (NO)-mediated dilatation of conduit arteries in response to an imposed increase in blood flow and shear stress. Flow-mediated dilation is affected by cardiovascular (CV) risk factors, relates to coronary artery endothelial function, and independently predicts CVD outcome. Accordingly, FMD is a tool for examining the pathophysiology of CVD and possibly identifying subjects at increased risk for future CV events. Moreover, it has merit in examining the acute and long-term impact of physiological and pharmacological interventions in humans. Despite concerns about its reproducibility, the available evidence shows that highly reliable FMD measurements can be achieved when specialized laboratories follow standardized protocols. For this purpose, updated expert consensus guidelines for the performance of FMD are presented, which are based on critical appraisal of novel technical approaches, development of analysis software, and studies exploring the physiological principles underlying the technique. Uniformity in FMD performance will (i) improve comparability between studies, (ii) contribute to construction of reference values, and (iii) offer an easy accessible and early marker of atherosclerosis that could complement clinical symptoms of structural arterial disease and facilitate early diagnosis and prediction of CVD outcomes.

19.
J Appl Physiol (1985) ; 126(6): 1687-1693, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31046519

RESUMO

Increase in mean shear stress represents an important and potent hemodynamic stimulus to improve conduit artery endothelial function in humans. No previous study has examined whether fluctuations in shear rate patterns, without altering mean shear stress, impacts conduit artery endothelial function. This study examined the hypothesis that 30-min exposure to fluctuations in shear rate patterns, in the presence of unaltered mean shear rate, improves brachial artery flow-mediated dilation. Fifteen healthy men (27.3 ± 5.0 yr) completed the study. Bilateral brachial artery flow-mediated dilation was assessed before and after unilateral exposure to 30 min of intermittent negative pressure (10 s, -40mmHg; 7 s, 0 mmHg) to induce fluctuation in shear rate, while the contralateral arm was exposed to a resting period. Negative pressure significantly increased shear rate, followed by a decrease in shear rate upon pressure release (both P < 0.001). Across the 30-min intervention, mean shear rate was not different compared with baseline (P = 0.458). A linear mixed model revealed a significant effect of time observed for flow-mediated dilation (P = 0.029), with exploratory post hoc analysis showing an increase in the intervention arm (∆FMD +2.0%, P = 0.008), but not in the contralateral control arm (∆FMD +0.5%, P = 0.664). However, there was no effect for arm (P = 0.619) or interaction effect (P = 0.096). In conclusion, we found that fluctuations in shear patterns, with unaltered mean shear, improves brachial artery flow-mediated dilation. These novel data suggest that fluctuations in shear pattern, even in the absence of altered mean shear, represent a stimulus to acute change in endothelial function in healthy individuals. NEW & NOTEWORTHY Intermittent negative pressure applied to the forearm induced significant fluctuations in antegrade and retrograde shear rate, while mean shear was preserved relative to baseline. Our exploratory study revealed that brachial artery flow-mediated dilation was significantly improved following 30-min exposure to intermittent negative pressure. Fluctuations in blood flow or shear rate, with unaltered mean shear, may have important implications for vascular health; however, further research is required to identify the underlying mechanisms and potential long-term health benefits.

20.
Front Physiol ; 10: 264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930798

RESUMO

Introduction: Reperfusion is required to salvage ischaemic tissue, but also causes further damage (i.e., ischaemia/reperfusion-injury). Heart failure patients reveal exaggerated ischaemia/reperfusion-injury, whilst traditional ischaemic preconditioning cannot prevent ischaemia/reperfusion-injury. Exercise training may be a more powerful preconditioning stimulus, especially high-intensity interval training given the similarities with ischaemic preconditioning. Therefore, we examined the impact of 12-week continuous training vs. high-intensity interval training on brachial artery endothelial ischaemia/reperfusion-injury in heart failure patients New York Heart Association-class II-III. Methods: Twenty heart failure patients (male:female 19:1, 64 ± 8 years, ejection fraction 38 ± 6%) were allocated to 12-weeks of high-intensity interval training (10∗1-min 90% maximal workload - 2.5-min 30% maximal workload) or continuous training (30-min 60-75% maximal workload). Before and after the intervention, we measured brachial artery endothelial function with flow-mediated dilation (FMD) before and after ischaemia/reperfusion (5-min ischemic exercise, 15-min reperfusion). Results: Ischaemia/reperfusion caused a significant decline in FMD (continuous training (n = 10): 5.2 ± 2.5 to 3.4 ± 1.6%, high-intensity interval training (n = 10): 5.3 ± 2.6 to 3.5 ± 1.6%, P = 0.01), which was not different between groups (P > 0.05). Training improved maximal workload and fitness (P < 0.05), with no differences between groups (P > 0.05). Exercise training did not alter FMD (P > 0.05), whilst ischaemia/reperfusion did not impair FMD after exercise training (continuous training: 4.8 ± 3.0 to 4.2 ± 2.3%, high-intensity interval training: 4.7 ± 2.5 to 3.8 ± 2.3%, P > 0.05). No changes were found in FMD before or after ischaemia/reperfusion after 12-weeks in controls (n = 9). Conclusion: We found that 12-week exercise training in heart failure patients mitigated endothelial ischaemia-reperfusion injury, an effect independent of the type of exercise. These changes may contribute to the cardioprotective effects of exercise training, whilst our findings highlight the potency of exercise as a preconditioning stimulus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA