Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.252
Filtrar
1.
Chemosphere ; 286(Pt 3): 131864, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34399270

RESUMO

In this article, the degradation of 4, 4'-(hexafluoroisopropylidene) diphenol (bisphenol AF, BPAF) by ozone was studied and toxicity of the degradation products was evaluated. Kinetic studies showed that acidic conditions were more conducive to the ozone degradation of BPAF than alkaline conditions. In the presence of common anions, Br- and SO42- promoted the degradation of BPAF, whereas NO2-, NO3-, HSO3- inhibited the degradation, and the other anions and cations had no significant effect. The degradation products were analyzed by mass spectrometry, and were mainly manifested in hydroxylation, carboxylation and cleavage of benzene ring. The addition of NO2-, HSO3- and Br-produced the corresponding free radicals, resulting in the parent compound being attacked and affecting the degradation efficiency and pathways. The theoretical calculated results showed that the ortho-site of the BPAF phenolic hydroxyl group was more active than the meta-position, and it's more likely for free radicals to attack ortho-sites and initiate substitution reactions. Toxicity assessment of the products in the process of ozone degradation showed that toxicity of the products was reduced by benzene ring cleavage and a reduction in the F atomic number. However, the toxicity of nitro and brominated products of BPAF was increased. These findings provide some new insights into the role of common ions in ozonation process and product formation, and supplement the existing conclusions. The results of this study remind future researchers to concern that inorganic ions in real water may be converted into corresponding free radicals that affect the formation of ozone oxidation products.


Assuntos
Ozônio , Poluentes Químicos da Água , Ânions , Compostos Benzidrílicos , Cinética , Oxirredução , Fenóis , Poluentes Químicos da Água/toxicidade
2.
Photodiagnosis Photodyn Ther ; : 102653, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34848376

RESUMO

We reported for the first time the use of indocyanine green fluorescence imaging technology to assist the resection of rectal neuroendocrine tumors with liver metastases. The liver metastases of rectal neuroendocrine tumors show strong fluorescent signals, the tumor borders are clear, and there is no fluorescence at the resection margin, indicating that the tumor has been completely removed. Postoperative pathology also confirmed that the tumor margin was negative. ICG fluorescence imaging has great potential in assisting the resection of liver metastases of neuroendocrine tumors, and at the same time is able to assist in judging the removal of the tumor.

3.
Cell Biol Toxicol ; 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34755307

RESUMO

The modern categories of endogenous non-coding RNAs, namely circular RNAs (circRNAs), involved within the carcinogenesis and progression of various human cancers. The fundamental aim of the current investigation was the evaluation of the hsa_circ_0014130 expressions, their biological functions, and potential regulatory network in bladder cancer. The level of expression for hsa_circ_0014130 was evaluated by qRT-PCR, and its relationships to clinicopathological features and survival outcomes of cases experiencing cancer of the bladder were scrutinized. The impact of hsa_circ_0014130 expressions on biological attitudes of bladder cancer cells in vitro was investigated. The interactions between hsa_circ_0014130 and microRNA (miRNA) sponge, miRNA, and its direct targets were determined by RNA pull-down as well as luciferase reporter gene assay. The correlations of their expression were determined by Pearson's correlation analysis. Rescue experiments were carried out to identify the biological roles of the regulation network. The expressions of hsa_circ_0014130 were markedly ameliorated in bladder cancer samples and linked with aggressive characteristics and unfavorable survival. Ectopic expression of hsa_circ_0014130 clearly enhanced the differentiation, proliferative, migratory, invasive potential of the cell in bladder cancer, and the development of tumor xenograft in vivo, while malignant biological behaviors were inhibited by hsa_circ_0014130 knockdown. The expression of hsa_circ_0014130 was tied to miR-132-3p in a negative manner with the cells and tissues of bladder cancer. hsa_circ_0014130 function as a competitive endogenous RNA for miR-132-3p to play oncogenic roles in bladder cancer cells. On the other hand, KCNJ12 was a straightforward target of miR-132-3p at the downstream, and the expressions of KCNJ12 were inversely related to that of miR-132-3p. Furthermore, a significantly positive correlation was found between hsa_circ_0014130 and KCNJ12 mRNA expression. More importantly, the oncogenic impact of hsa_circ_0014130 on bladder cancer cells was partly suppressed by ectopic expression of miR-132-3p or KCNJ12 knockdown. The underlined data revealed that hsa_circ_0014130 exerted its biological roles by regulating miR-132-3p/KCNJ12 expression. Further research revealed hsa_circ_0014130/miR-132-3p/KCNJ12 axis has participated in the Epithelial-mesenchymal transition (EMT) progress and GSK3ß/AKT signaling pathway. hsa_circ_0014130 works as a sponge of miR-132-3p to advance the oncogenesis and metastasis of bladder cancer by regulation of the KCNJ12 expression. These achievements might ameliorate the comprehension of tumor pathogenesis and provide novel therapeutic targets for cancer of the bladder.

4.
IEEE Trans Biomed Eng ; PP2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34818184

RESUMO

OBJECTIVE: This translational study aims to investigate the clinical benefits of indocyanine green (ICG) based near-infrared window II (NIR-II) fluorescence image-guided surgery (FGS) on high-grade glioma (HGG) patients. METHODS: Patients were randomly assigned to receive FGS or traditional white light image-guided surgery (WLS). The detection rate of NIR-II fluorescence was observed. Complete resection rate, progression-free survival (PFS), overall survival (OS), and neurological status were compared. Tissue samples were obtained from the FGS group, with the diagnosis based on the surgeons and the fluorescence recorded for comparison of diagnostic capability. Patients with WHO grade III gliomas or glioblastomas (GBM) were analyzed separately. RESULTS: 15 GBM and 4 WHO grade III glioma patients in the FGS group and 18 GBM and 4 WHO grade III glioma patients in the WLS group were enrolled. The detection rate of NIR-II fluorescence was 100% for GBM. The complete resection rate was significantly increased by the FGS for GBM (FGS, 100% [95% CI 73.41-100] vs. WLS, 50% [95% CI 29.03-70.97], P = 0.0036). The PFS and OS of the FGS group were also significantly prolonged (Median PFS: FGS, 9.0 months vs. WLS, 7.0 months, P < 0.0001; Median OS: FGS, 19.0 months vs. WLS, 15.5 months, P = 0.0002). No recurrence was observed in WHO grade III glioma patients. CONCLUSIONS: NIR-II FGS achieves much better complete resection rate of GBM than conventional WLS, leading to greatly improved survival of GBM patients. SIGNIFICANCE: NIR-II FGS is a highly promising technique worthy of exploring more clinical applications.

5.
Photodiagnosis Photodyn Ther ; 36: 102610, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34728421

RESUMO

We describe two cases using indocyanine green (ICG) fluorescence imaging for visualization of the common bile duct (CBD) in patients with difficult Bile duct exploration (BDE) due to extensive dense adhesions around the hepatoduodenal ligament. The CBD was rapidly detected under fluorescence guidance without excessive dissection of extensive dense adhesions. It is illustrated that the use of ICG fluorescence imaging is effective and feasible for detecting the CBD and thus we highly recommend this method during difficult BDE.

6.
Front Psychol ; 12: 735837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777121

RESUMO

Although green technological innovation is designed to combat climate change, recent research suggests that increased attention to technological innovations might decrease climate change risk perception and reduce pro-environmental behaviors due to the feeling of being assured, which is referred to as risk compensation behavior. Although there has been a growing interest in reducing the risk compensation effect related to climate change, the academic literature in this area is very limited. In this study, we propose a psychological intervention to mitigate a sample of university students' (N = 1,500) irrational response to green technological innovation so as to promote their pro-environmental behaviors. Our experiments identify students' mental construal level as an important psychological factor that, when combined with a proper message framing strategy of introducing new green technologies, can remedy their irrational response to new green technologies. Our findings suggest that highlighting the new technology as playing a preventive/promotional role related to climate change can mitigate risk compensation behavior and eventually promote students' pro-environmental behaviors when they are at a high/low mental construal level.

7.
Sensors (Basel) ; 21(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833722

RESUMO

Recently, the concept of spatial and direction modulation (SDM) has been developed to reap the advantages of both spatial modulation (SM) and directional modulation (DM). On the one hand, DM ensures the transmission security at the expected direction. On the other hand, the structure of SM-aided distributed receivers can enhance the security even if the eavesdropper is located in the same direction as the legitimate receiver. However, the above advantages are achieved based on the assumption that the eavesdropper is not equipped with distributed receivers. On the other hand, the information security can no longer be guaranteed when the eavesdropper is also equipped with distributed receivers. To alleviate this problem, we considered a joint design of SDM and covert information mapping (CIM) in order to conceive of a more robust structure of CIM-SDM. Furthermore, both the detection performances at the eavesdropper and the legitimate user were quantified through theoretical derivation. In general, both the analysis and simulation results supported that the proposed CIM-SDM structure provides more robust secure performance compared to the original SDM, even if the extreme condition of distributed receivers at the eavesdropper is considered, at the cost of moderate performance loss at the legitimate user.

8.
Sensors (Basel) ; 21(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34833830

RESUMO

In situ fluorophores were induced on polyvinyl alcohol (PVA) bulk materials by direct femtosecond laser writing. The generation of fluorophores was ascribed to localized laser-assisted carbonization. The carbonization of PVA polymers was confirmed through X-ray photoelectron spectroscopy analysis. The distinct fluorescence responses of fluorophores in various solutions were harnessed for implementing in situ reagent sensors, metal ion sensors, data encryption, and data security applications. The demonstrated water detection sensor in acetone exhibited a sensitivity of 3%. Meanwhile, a data encryption scheme and a "burn after reading" technique were demonstrated by taking advantage of the respective reversible and irreversible switching properties of the in situ laser-induced fluorophores. Taking a step further, a quantitative cobalt ion measurement was demonstrated based on the concentration-dependent fluorescence recovery. Combined with a laser-induced hydrophilic modification, our scheme could enable "lab-on-a-chip" microfluidics sensors with arbitrary shape, varied flow delay, designed reaction zones, and targeted functionalities in the future.

9.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834045

RESUMO

The viscosity (9.34-405.92 mPa·s) and absorption capacity (0.4394-1.0562 g·g-1) of (1-ethyl-3-methylidazolium trifluoroacetate + triethanolamine) binary blends atmospheric pressure in the temperature range of 303.15-343.15 K and at different mole fractions of [EMIM] [TFA] have been carried out. The molar fraction of [EMIM] [TFA] dependence of the viscosity and absorption capacity was demonstrated. The addition of a small amount of [EMIM] [TFA] into TEA led to rapidly decreased rates of binary blends' viscosity and absorption capacity. However, the viscosity and absorption of binary blends did not decrease significantly when [EMIM] [TFA] was increased to a specific value. Compared with the molar fraction of the solution, the temperature had no obvious effect on viscosity and absorption capacity. By modeling and optimizing the ratio of viscosity and absorption capacity of ([EMIM] [TFA] + TEA), it is proven that when the mole fraction of [EMIM] [TFA] is 0.58, ([EMIM] [TFA] + TEA) has the best viscosity and absorption capacity at the same time. In addition, at 303.15 K, ([EMIM] [TFA] + TEA) was absorbed and desorbed six times, the absorption slightly decreased, and the desorption increased.

10.
Mol Imaging Biol ; 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34622424

RESUMO

PURPOSE: Histological analysis of human carotid atherosclerotic plaques is critical in understanding atherosclerosis biology and developing effective plaque prevention and treatment for ischemic stroke. However, the histological staining process is laborious, tedious, variable, and destructive to the highly valuable atheroma tissue obtained from patients. PROCEDURES: We proposed a deep learning-based method to simultaneously transfer bright-field microscopic images of unlabeled tissue sections into equivalent multiple sections of the same samples that are virtually stained. Using a pix2pix model, we trained a generative adversarial neural network to achieve image-to-images translation of multiple stains, including hematoxylin and eosin (H&E), picrosirius red (PSR), and Verhoeff van Gieson (EVG) stains. RESULTS: The quantification of evaluation metrics indicated that the proposed approach achieved the best performance in comparison with other state-of-the-art methods. Further blind evaluation by board-certified pathologists demonstrated that the multiple virtual stains have high consistency with standard histological stains. The proposed approach also indicated that the generated histopathological features of atherosclerotic plaques, such as the necrotic core, neovascularization, cholesterol crystals, collagen, and elastic fibers, are optimally matched with those of standard histological stains. CONCLUSIONS: The proposed approach allows for the virtual staining of unlabeled human carotid plaque tissue images with multiple types of stains. In addition, it identifies the histopathological features of atherosclerotic plaques in the same tissue sample, which could facilitate the development of personalized prevention and other interventional treatments for carotid atherosclerosis.

11.
Front Oncol ; 11: 686294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631520

RESUMO

Background: Whether anesthesia methods affect malignant biological behavior of cancer remains unresolved. In this study, we aim to compare the effects of general anesthesia (GA) and local anesthesia (LA) on serum collected from primary hepatocellular carcinoma (HCC) patients presenting for radiofrequency ablation (RFA). Methods: From August 2020 to December 2020, a prospective, randomized, and controlled study was conducted at Renji Hospital, which is affiliated with Shanghai Jiaotong University School of Medicine. 25 qualified patients from 18 to 65 years of age undergoing RFA were enrolled in the study and randomly assigned into two groups: the GA group (n = 14) and the LA group (n = 11). Venous blood was drawn from all patients preoperatively and 1 hour postoperatively. The serum collected was then used for the culturing of HepG2 cells. The malignant biological behaviors of HepG2 cells, including invasion, migration and proliferation, were observed after 24 hours of exposure to patients' serum. ELISA was used to compare expression levels of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) and lymphokines (IFN-γ, IL-2) in patients' serum from both groups. Results: HepG2 cells cultured with postoperative serum obtained from patients who received GA, but not LA, were associated with significantly increased cell invasion, migration and proliferation, compared to preoperative serum from the same patient group. Expression levels of pro-inflammatory cytokines were significantly higher, and lymphokines significantly lower in postoperative serum from GA patients compared to the corresponding preoperative serum. Conclusion: GA affects the serum milieu of patients with HCC, promoting the malignant biological behavior of a human HCC cell line.

12.
Eur Radiol ; 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654965

RESUMO

OBJECTIVES: Breast cancer (BC) is the most common cancer in women worldwide, and neoadjuvant chemotherapy (NAC) is considered the standard of treatment for most patients with BC. However, response rates to NAC vary among patients, which leads to delays in appropriate treatment and affects the prognosis for patients who ineffectively respond to NAC. This study aimed to investigate the feasibility of deep learning radiomics (DLR) in the prediction of NAC response at an early stage. METHODS: In total, 168 patients with clinicopathologically confirmed BC were enrolled in this prospective study, from March 2016 to December 2020. All patients completed NAC treatment and underwent ultrasonography (US) at three time points (before NAC, after the second course, and after the fourth course). We developed two DLR models, DLR-2 and DLR-4, for predicting responses after the second and fourth courses of NAC. Furthermore, a novel deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response at different time points of NAC administration. RESULTS: In the validation cohort, DLR-2 achieved an AUC of 0.812 (95% CI: 0.770-0.851) with an NPV of 83.3% (95% CI: 76.5-89.6). DLR-4 achieved an AUC of 0.937 (95% CI: 0.913-0.955) with a specificity of 90.5% (95% CI: 86.3-94.2). Moreover, 19 of 21 non-response patients were successfully identified by DLRP, suggesting that they could benefit from treatment strategy adjustment at an early stage of NAC. CONCLUSIONS: The proposed DLRP strategy holds promise for effectively predicting NAC response at its early stage for BC patients. KEY POINTS: • We proposed two novel deep learning radiomics (DLR) models to predict response to neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on US images at different NAC time points. • Combining two DLR models, a deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response to NAC. • The DLRP may provide BC patients and physicians with an effective and feasible tool to predict response to NAC at an early stage and to determine further personalized treatment options.

13.
Front Immunol ; 12: 749192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646275

RESUMO

Recent years, the immunosuppressive properties of mesenchymal stem cells (MSCs) have been demonstrated in preclinical studies and trials of inflammatory and autoimmune diseases. Emerging evidence indicates that the immunomodulatory effect of MSCs is primarily attributed to the paracrine pathway. As one of the key paracrine effectors, mesenchymal stem cell-derived exosomes (MSC-EXOs) are small vesicles 30-200 nm in diameter that play an important role in cell-to-cell communication by carrying bioactive substances from parental cells. Recent studies support the finding that MSC-EXOs have an obvious inhibitory effect toward different effector cells involved in the innate and adaptive immune response. Moreover, substantial progress has been made in the treatment of autoimmune diseases, including multiple sclerosis (MS), systemic lupus erythematosus (SLE), type-1 diabetes (T1DM), uveitis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSC-EXOs are capable of reproducing MSC function and overcoming the limitations of traditional cell therapy. Therefore, using MSC-EXOs instead of MSCs to treat autoimmune diseases appears to be a promising cell-free treatment strategy. In this review, we review the current understanding of MSC-EXOs and discuss the regulatory role of MSC-EXOs on immune cells and its potential application in autoimmune diseases.

14.
IEEE Trans Med Imaging ; PP2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34648436

RESUMO

The traditional finite element method-based fluorescence molecular tomography (FMT)/ X-ray computed tomography (XCT) imaging reconstruction suffers from complicated mesh generation and dual-modality image data fusion, which limits the application of in vivo imaging. To solve this problem, a novel standardized imaging space reconstruction (SISR) method for the quantitative determination of fluorescent probe distributions inside small animals was developed. In conjunction with a standardized dual-modality image data fusion technology, and novel reconstruction strategy based on Laplace regularization and L1-fused Lasso method, the in vivo distribution can be calculated rapidly and accurately, which enables standardized and algorithm-driven data process. We demonstrated the method's feasibility through numerical simulations and quantitatively monitored in vivo programmed death ligand 1 (PD-L1) expression in mouse tumor xenografts, and the results demonstrate that our proposed SISR can increase data throughput and reproducibility, which helps to realize the dynamically and accurately in vivo imaging.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34651229

RESUMO

PURPOSE: Diagnosis of lymph node metastasis (LNM) is critical for patients with pancreatic ductal adenocarcinoma (PDAC). We aimed to build deep learning radiomics (DLR) models of dual-energy computed tomography (DECT) to classify LNM status of PDAC and to stratify the overall survival before treatment. METHODS: From August 2016 to October 2020, 148 PDAC patients underwent regional lymph node dissection and scanned preoperatively DECT were enrolled. The virtual monoenergetic image at 40 keV was reconstructed from 100 and 150 keV of DECT. By setting January 1, 2021, as the cut-off date, 113 patients were assigned into the primary set, and 35 were in the test set. DLR models using VMI 40 keV, 100 keV, 150 keV, and 100 + 150 keV images were developed and compared. The best model was integrated with key clinical features selected by multivariate Cox regression analysis to achieve the most accurate prediction. RESULTS: DLR based on 100 + 150 keV DECT yields the best performance in predicting LNM status with the AUC of 0.87 (95% confidence interval [CI]: 0.85-0.89) in the test cohort. After integrating key clinical features (CT-reported T stage, LN status, glutamyl transpeptadase, and glucose), the AUC was improved to 0.92 (95% CI: 0.91-0.94). Patients at high risk of LNM portended significantly worse overall survival than those at low risk after surgery (P = 0.012). CONCLUSIONS: The DLR model showed outstanding performance for predicting LNM in PADC and hold promise of improving clinical decision-making.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34674948

RESUMO

BACKGROUND: Macrovascular invasion (MaVI) occurs in nearly half of hepatocellular carcinoma (HCC) patients at diagnosis or during follow-up, which causes severe disease deterioration, and limits the possibility of surgical approaches. This study aimed to investigate whether computed tomography (CT)-based radiomics analysis could help predict development of MaVI in HCC. METHODS: A cohort of 226 patients diagnosed with HCC was enrolled from 5 hospitals with complete MaVI and prognosis follow-ups. CT-based radiomics signature was built via multi-strategy machine learning methods. Afterwards, MaVI-related clinical factors and radiomics signature were integrated to construct the final prediction model (CRIM, clinical-radiomics integrated model) via random forest modeling. Cox-regression analysis was used to select independent risk factors to predict the time of MaVI development. Kaplan-Meier analysis was conducted to stratify patients according to the time of MaVI development, progression-free survival (PFS), and overall survival (OS) based on the selected risk factors. RESULTS: The radiomics signature showed significant improvement for MaVI prediction compared with conventional clinical/radiological predictors (P < 0.001). CRIM could predict MaVI with satisfactory areas under the curve (AUC) of 0.986 and 0.979 in the training (n = 154) and external validation (n = 72) datasets, respectively. CRIM presented with excellent generalization with AUC of 0.956, 1.000, and 1.000 in each external cohort that accepted disparate CT scanning protocol/manufactory. Peel9_fos_InterquartileRange [hazard ratio (HR) = 1.98; P < 0.001] was selected as the independent risk factor. The cox-regression model successfully stratified patients into the high-risk and low-risk groups regarding the time of MaVI development (P < 0.001), PFS (P < 0.001) and OS (P = 0.002). CONCLUSIONS: The CT-based quantitative radiomics analysis could enable high accuracy prediction of subsequent MaVI development in HCC with prognostic implications.

17.
Chin Med Sci J ; 36(3): 171-172, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34666869
18.
Chin Med Sci J ; 36(3): 173-186, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34666870

RESUMO

Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the fourth leading cause of cancer related death worldwide. China covers over half of cases, leading HCC to be a vital threaten to public health. Despite advances in diagnosis and treatments, high recurrence rate remains a major obstacle in HCC management. Multi-omics currently facilitates surveillance, precise diagnosis, and personalized treatment decision making in clinical setting. Non-invasive radiomics utilizes preoperative radiological imaging to reflect subtle pixel-level pattern changes that correlate to specific clinical outcomes. Radiomics has been widely used in histopathological diagnosis prediction, treatment response evaluation, and prognosis prediction. High-throughput sequencing and gene expression profiling enabled genomics and proteomics to identify distinct transcriptomic subclasses and recurrent genetic alterations in HCC, which would reveal the complex multistep process of the pathophysiology. The accumulation of big medical data and the development of artificial intelligence techniques are providing new insights for our better understanding of the mechanism of HCC via multi-omics, and show potential to convert surgical/intervention treatment into an antitumorigenic one, which would greatly advance precision medicine in HCC management.

20.
Anal Chem ; 93(41): 13928-13934, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609848

RESUMO

Herein, a new field-free and highly ordered spherical nucleic acid (SNA) nanostructure was self-assembled directly by ferrocene (Fc)-labeled DNA tweezers and DNA linkers based on the Watson-Crick base pairing rule, which was employed as an electrochemiluminescence (ECL) quenching switch with improved recognition efficiency due to the high local concentration of the ordered nanostructure. Moreover, with a collaborative strategy combined with the advantages of both self-accelerated approach and pore confinement-enhanced ECL effect, the mesoporous silica nanospheres (mSiO2 NSs) were prepared to be filled with rubrene (Rub) as ECL emitters and Pt nanoparticles (PtNPs) as coreaction accelerators (Rub-Pt@mSiO2 NSs), which demonstrated high ECL response in the aqueous media (dissolved O2 as coreactant). When the SNA nanostructure was immobilized on the Rub-Pt@mSiO2 NSs-modified electrode, it presented a "signal off" state owing to the quenching effect of the Fc molecules. As a proof of concept, the SNA-based ECL switch platform was applied in the detection of microRNA let-7b (let-7b). Impressively, in the presence of the target let-7b, a deconstruction of the SNA nanostructure was actuated, causing the Fc to leave the electrode surface and achieved an extremely high ECL recovery ("signal on" state). Hence, a sensitive determination for let-7b was realized with a low detection limit of 1.8 aM ranging from 10 aM to 1 nM by employing the Rub-Pt@mSiO2 NSs-based ECL platform combined with the target-triggered SNA deconstruction, which also offered an ingenious method for the further applications of biomarker analyses.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Ácidos Nucleicos , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...