Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 416: 125897, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492835

RESUMO

Interconnected macro-porous cryogels with robust and pore-tunable structures have been fabricated using chemically crosslinked microfibrillated cellulose (MFC). Periodate oxidation was initially conducted to introduce aldehyde groups into the MFC surface, followed by the freeze-induced chemical crosslinking via the formation of hemiacetal bonds between aldehyde and hydroxyl at -12 °C. The cryogels with pore-tunable structures and sharply enhanced mechanical strengths were finally achieved by re-assembly of MFCs through soaking in NaIO4 solution. Furthermore, the MFC cryogels were post-crosslinked by polyethyleneimine (PEI), bestowing the cryogels with the capability of adsorbing anionic dyes. The stress of the PEI-MFC cryogel at the 80% strain was determined to be 304.5 kPa, which is the maximum value for the nanocellulose-based cryogels reported so far. Finally, the adsorption performances of PEI-MFC cryogels for methyl orange (MO) were evaluated. Maximum adsorption capacity of 500 mg/g could be obtained by the Langmuir model, outperforming that of previous absorbent materials. Reuse experiments indicated that over 90% of adsorption capacity was retained after 6 cycles. Continuous clean-up experiments demonstrated excellent MO removal abilities of the PEI-MFC cryogel. This study shows that the novel, green strategy to fabricate the robust cryogel extends the practical applications of nanocellulose adsorbents for environmental remediation.


Assuntos
Criogéis , Nanofibras , Adsorção , Compostos Azo , Celulose , Corantes , Porosidade
2.
Carbohydr Polym ; 272: 118498, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420751

RESUMO

Construction of monolithic cryogels that can efficiently adsorb proteins is of great significance in biotechnological and pharmaceutical industries. Herein, a novel approach is presented to fabricate microfibrillated cellulose (MFC)/sodium alginate (SA) cryogels by using freezing-induced oxa-Michael reaction at -12 °C. Thanks to the controllable reactiveness of divinyl sulfone (DVS), cryo-concentrated pH increase activates the oxa-Michael reaction between DVS and hydroxyl groups of MFCs and SAs. The obtained composite cryogel exhibits outstanding underwater shape recovery and excellent fatigue resistance. Moreover, the MFC/SAs reveal a high lysozyme adsorption capacity of 294.12 mg/g, surpassing most of absorbent materials previously reported. Furthermore, the cryogel-packed column can purify lysozyme continuously from chicken egg white, highlighting its outstanding practical application performance. Reuse experiments indicated that over 90% of lysozyme extraction capacity was retained after 6 cycles. This work provides a new avenue to design and develop next-generation chromatographic media of natural polysaccharide-based cryogel for protein purification.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120092, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34175758

RESUMO

Recently, it is urgent to ameliorate the accumulation and quantification performances of surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) to promote its reliable clinical application. Herein, a smart hydrophilic-hydrophobic SERS-based LFIA strip was demonstrated by decorating Ag nanoplates with hydrophilic surface onto the specific regions of hydrophobic polymethylmethacrylate (PMMA) film with Raman internal standard (IS), which can unexpectedly inhibit the "coffee-ring phenomenon". The target analytes were consequently enriched in the SERS-active Ag regions by the hydrophobic PMMA, considerably endowing the strip with amended quantitative monitoring ability. Aided by immunoprobes of flower-shaped Ag nanoplates, a limit of detection as 10 pg/mL and an outstanding correlation coefficient value (R2) of 0.992 for carcinoembryonic antigen (CEA) were obtained by utilizing this SERS-based LFIA strip, which can be conducive to clinical monitoring and will broaden the field of vision for the point-of-care diagnostic technique.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Ouro , Imunoensaio , Limite de Detecção , Polimetil Metacrilato , Prata
4.
J Agric Food Chem ; 69(6): 1975-1983, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33544589

RESUMO

Surface-enhanced Raman scattering (SERS) with fast and intuitive property has been extensively utilized in the field of food safety. Here, we demonstrated a novel noble metal-polymer hybrid film as a SERS substrate for food fungicide analysis. Benefiting from its transparency and flexibility, poly(dimethylsiloxane) (PDMS) film was chosen as a versatile supporting matrix to grow gold nanobushes (Au NBs) through a seed-mediated process. The as-prepared AuNB-PDMS hybrid film performed satisfactorily in testing 4-nitrothiophenol (4NTP) and exhibited an enhancement factor (EF) of 2.56 × 106. Moreover, the high sensitivity and elastic properties make the hybrid film a promising substrate in practical detection. Hence, the in situ sensing of TBZ, carbaryl, and their mixture was finally realized using the developed hybrid film, which exhibited higher sensitivity than that obtained by the swabbing method. This high-performance SERS substrate based on the flexible and transparent AuNB-PDMS hybrid film has great potential applications in the fast in situ monitoring of biochemical molecules.


Assuntos
Ouro , Nanopartículas Metálicas , Polímeros , Análise Espectral Raman
5.
Water Sci Technol ; 83(2): 381-395, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33504702

RESUMO

Coal gangue (CG) as mineral waste was properly treated and applied as the filter media in permeable pavement systems due to its good sorption ability and mechanical strength. Batch experiments show the maximum adsorption capacity of calcined CG to phosphorus could reach 2.63 mg/g. To evaluate the removal effect of typical runoff pollutants including chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and ammonia (NH4+-N), the gravel and sand in a traditional pavement system were replaced by CG respectively. The leaching behavior of the four pollutants in CG modified systems is limited and comparable with traditional system, indicating pretreated CG as filler would not cause environmental risk. CG-based pavement systems improved the removal efficiency of the four pollutants especially for TP. The removal mechanisms including interception, adsorption and microorganism degradation. The removal rates of COD, NH4+-N and TN by CG modified and traditional systems decreased with rainfall duration, while it is not obviously changed with rainfall recurrence period and drying period. Overall, the permeable pavement with CG layers that replaced both sand and gravel layers show best removal efficiency of all pollutants investigated especially for TP (>95%). This study provides a new way for CG utilization and gives the reference for the process design of permeable pavement.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Carvão Mineral , Nitrogênio/análise , Fósforo , Chuva , Movimentos da Água , Poluentes Químicos da Água/análise
6.
J Hazard Mater ; 403: 124009, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265038

RESUMO

Here, straight upward Au nanowires (NWs) were successfully grown onto Fe3O4@TiO2 matrix through a seed-mediated strategy to intensively improve its photocatalysis and SERS performances, facilitating a peculiar recyclable surface-enhanced Raman spectroscopy (SERS)-based immunoassay of CA19-9 in liquid form based on visible light irradiation. Such immunoassay was also supported by a smart heterobifunctional cross-linking agent-mediated probe of anti-CA19-9/4-MBA without metal nanoparticles. A low limit of detection of 5.65 × 10-4 IUmL-1 and a wide linear range from 1000 to 0.001 IUmL-1 were demonstrated through repeated constructing the sandwich immunostructure with only one batch of nanocomposites. Moreover, the actual levels of CA19-9 for colorectal cancer patients were readily measured by the recyclable immunoassay, the results of which are principally consistent with the conventional CLIA detection. Thus, such a green strategy of visible light-induced recyclable immunoassay could be expected to have a potential practicability in the clinical diagnoses of cancer.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Nanofios , Antígeno CA-19-9 , Ouro , Humanos , Imunoensaio , Fenômenos Magnéticos , Semicondutores , Análise Espectral Raman
7.
Biosensors (Basel) ; 10(3)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188036

RESUMO

A novel recyclable surface-enhanced Raman scattering (SERS)-based immunoassay was demonstrated and exhibited extremely high sensitivity toward prostate specific antigen (PSA). The immunoassay, which possessed a sandwich structure, was constructed of multifunctional Fe3O4@TiO2@Au nanocomposites as immune probe and Ag-coated sandpaper as immune substrate. First, by adjusting the density of outside Au seeds on Fe3O4@TiO2 core-shell nanoparticles (NPs), the structure-dependent SERS and photocatalytic performance of the samples was explored by monitoring and degradating 4-mercaptobenzonic acid (4MBA). Afterwards, the SERS enhancement capability of Ag-coated sandpaper with different meshes was investigated, and a limit of detection (LOD), as low as 0.014 mM, was achieved by utilizing the substrate. Subsequently, the recyclable feasibility of PSA detection was approved by zeta potential measurement, absorption spectra, and SEM images and, particularly, more than 80% of SERS intensity still existed after even six cycles of immunoassay. The ultralow LOD of the recyclable immunoassay was finally calculated to be 1.871 pg/mL. Therefore, the recyclable SERS-based immunoassay exhibits good application prospects for diagnosis of cancer in clinical measurements.


Assuntos
Compostos Férricos/química , Ouro/química , Calicreínas/análise , Antígeno Prostático Específico/análise , Prata/química , Titânio/química , Humanos , Imunoensaio , Limite de Detecção , Nanopartículas Metálicas/química , Nanocompostos , Reciclagem , Análise Espectral Raman , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 12(12): 14386-14399, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118398

RESUMO

Pesticides, extensively used in agriculture production, have received enormous attention because of their potential threats to the environment and human health. Hence, in this study, a kind of highly sensitive and stable hybrid surface-enhanced Raman scattering (SERS)-active substrates constructed with flower-like two-dimensional molybdenum sulfide and Ag (MoS2@Ag) has been developed, and then the above substrate was sequentially utilized in the recyclable detection of pesticide residues on several kinds of fruits and vegetables. In the first place, the excellent photocatalytic performance of the MoS2@Ag hybrid substrate was demonstrated, which was attributed to the inhibition of electron-hole combination after the formation of Schottky barrier between the Ag NPs and MoS2 matrix. Thereafter, two calibration curves with ultra-low limits of detection (LOD) as 6.4 × 10-7 and 9.8 × 10-7 mg/mL were established for the standard solutions of thiram (tetramethylthiuram disulfide, TMTD) and methyl parathion (MP), and then the recyclable assay of their single and mixed residues on eggplant, Chinese cabbage, grape, and strawberry was successfully realized. It is interesting to note that the detection recoveries from 95.5 to 63.1% for TMTD and 92.3 to 62.6% for MP are greatly dependent on the size and surface roughness of these foods. In a word, the MoS2@Ag composite matrix shows attractive SERS and photocatalysis performance, and it is expected to have the potential application on food safety monitoring.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas/química , Resíduos de Praguicidas/isolamento & purificação , Praguicidas/isolamento & purificação , Dissulfetos/química , Frutas/química , Limite de Detecção , Molibdênio/química , Resíduos de Praguicidas/química , Resíduos de Praguicidas/toxicidade , Praguicidas/química , Praguicidas/toxicidade , Prata/química , Análise Espectral Raman , Verduras/química
9.
Anim Biotechnol ; 31(1): 42-51, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30570383

RESUMO

Cellular retinoic acid binding protein 2 (CRABP2) is essential to myoblast differentiation. However, there was no report about the function of CRABP2 gene in cattle. This study explored the association of CRABP2 gene polymorphisms with growth traits in cattle breeds by several methods, such as DNA sequencing, PCR, PCR-RFLP and forced PCR-RFLP. Two sequence variants were determined. There were 621 individuals in six cattle breeds from China for the experiment, and three breeds were used to test validation of polymorphisms and extent of linkage disequilibrium (LD). The results showed that both SNPs (SNP1, g.2458 G > T, SNP2, g.3878 G > A) were in intron1. Two SNPs were in low linkage disequilibrium. Association analysis suggested that SNP1 had the significant difference on growth traits with body height, height at hip cross and body slanting length (P < .05), while SNP2 showed a significant difference in growth traits with body height, height at hip cross and body slanting length(P < .05). The results of this investigation displayed that the CRABP2 gene is an available candidate gene and may be used for breed selection and conservation.


Assuntos
Bovinos/fisiologia , Estudos de Associação Genética/veterinária , Polimorfismo de Nucleotídeo Único/genética , Animais , Cruzamento , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Feminino , Genótipo , Desequilíbrio de Ligação , Camundongos , Fenótipo , Polimorfismo de Fragmento de Restrição , Característica Quantitativa Herdável , Análise de Sequência de DNA/veterinária
10.
Gene ; 676: 243-248, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031031

RESUMO

As an important epigenetic modification DNA methylation is catalyzed by DNA methylation transferases (DNMTs) and occurs mainly in CpG islands. DNA methylation plays an important role in regulates gene expression, cell differentiation, genetic imprinting and tumor therapy. Retinoic acid-binding proteins (RAC) is vital for the absorption, transport, metabolism and maintenance of homeostasis of retinoic acid, which in turn regulates the differentiation and proliferation of cells by regulating the transcription of many target genes, therefore, these proteins influence differentiation and proliferation of adipocytes and muscle fibroblasts. Thus, cellular retinoic acid binding protein 2 (CRABP2) may be a candidate gene which affects beef quality, yield and fat deposition. The aim of this study was to evaluate the expression and the methylation pattern on the differentially methylated region (DMR) of the promoter of CRABP2. The DNA methylation pattern was tested by bisulfite sequencing polymerase chain reaction (BSP), the quantitative real-time PCR (qPCR) was used to analysis the expression of CRABP2 gene. The results showed that the DNA methylation level was higher in purebred cattle breed than that in hybrid cattle breeds which was negative correlation with the expression of the gen. These results indicate that the methylation status of the CRABP2 DMR can regulate mRNA expression. What's more, there are different methylation and expression patterns in different breeds and tissues which may influence the phenotype, and the results may be a useful parameter to investigate the function of CRABP2 in muscle and fat developmental in Chinese cattle.


Assuntos
Metilação de DNA , Regulação para Baixo , Receptores do Ácido Retinoico/genética , Animais , Bovinos , Ilhas de CpG , Epigênese Genética , Regiões Promotoras Genéticas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...