Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Rep ; 8(1): 7054, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728586


We experimentally demonstrated a narrowband acoustic phonon source with simultaneous tunabilities of the centre frequency and the spectral bandwidth in the GHz-sub THz frequency range based on photoacoustic excitation using intensity-modulated optical pulses. The centre frequency and bandwidth are tunable from 65 to 381 GHz and 17 to 73 GHz, respectively. The dispersion of the sound velocity and the attenuation of acoustic phonons in silicon dioxide (SiO2) and indium tin oxide (ITO) thin films were investigated using the acoustic phonon source. The sound velocities of SiO2 and ITO films were frequency-independent in the measured frequency range. On the other hand, the phonon attenuations of both of SiO2 and ITO films showed quadratic frequency dependences, and polycrystalline ITO showed several times larger attenuation than those in amorphous SiO2. In addition, the selective excitation of mechanical resonance modes was demonstrated in nanoscale tungsten (W) film using acoustic pulses with various centre frequencies and spectral widths.

Nanotechnology ; 26(7): 075704, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25627961


The knowledge on the influence of surface roughness and the electron-phonon (el-ph) interaction on electrical transport properties of nanoscale metal films is important from both fundamental and technological points of view. Here we report a study of the temperature dependent electron transport properties of nanoscale copper films by measuring temperature dependent electrical resistivity with thickness ranging from 4 to 500 nm. We show that the residual resistivity, which is temperature independent, can be described quantitatively using both measured vertical surface root-mean-square roughness and lateral correlation length in the nanoscale, with no adjustable parameter, by a recent quasi-classical model developed by Chatterjee and Meyerovich (2010 Phys. Rev. B 81 245409-10). We also demonstrate that the temperature dependent component of the resistivity can be described using the Bloch-Grüneisen equation with a thickness dependent el-ph coupling constant and a thickness dependent Debye temperature. We show that the increase of the el-ph coupling constant with the decrease of film thickness gives rise to an enhancement of the temperature dependent component of the resistivity.