Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Arrhythm Electrophysiol ; 12(10): e007549, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31607149

RESUMO

BACKGROUND: Early prediction of cardiovascular risk in the general population remains an important issue. The T-wave morphology restitution (TMR), an ECG marker quantifying ventricular repolarization dynamics, is strongly associated with cardiovascular mortality in patients with heart failure. Our aim was to evaluate the cardiovascular prognostic value of TMR in a UK middle-aged population and identify any genetic contribution. METHODS: We analyzed ECG recordings from 55 222 individuals from a UK middle-aged population undergoing an exercise stress test in UK Biobank (UKB). TMR was used to measure ventricular repolarization dynamics, exposed in this cohort by exercise (TMR during exercise, TMRex) and recovery from exercise (TMR during recovery, TMRrec). The primary end point was cardiovascular events; secondary end points were all-cause mortality, ventricular arrhythmias, and atrial fibrillation with median follow-up of 7 years. Genome-wide association studies for TMRex and TMRrec were performed, and genetic risk scores were derived and tested for association in independent samples from the full UKB cohort (N=360 631). RESULTS: A total of 1743 (3.2%) individuals in UKB who underwent the exercise stress test had a cardiovascular event, and TMRrec was significantly associated with cardiovascular events (hazard ratio, 1.11; P=5×10-7), independent of clinical variables and other ECG markers. TMRrec was also associated with all-cause mortality (hazard ratio, 1.10) and ventricular arrhythmias (hazard ratio, 1.16). We identified 12 genetic loci in total for TMRex and TMRrec, of which 9 are associated with another ECG marker. Individuals in the top 20% of the TMRrec genetic risk score were significantly more likely to have a cardiovascular event in the full UKB cohort (18 997, 5.3%) than individuals in the bottom 20% (hazard ratio, 1.07; P=6×10-3). CONCLUSIONS: TMR and TMR genetic risk scores are significantly associated with cardiovascular risk in a UK middle-aged population, supporting the hypothesis that increased spatio-temporal heterogeneity of ventricular repolarization is a substrate for cardiovascular risk and the validity of TMR as a cardiovascular risk predictor.

2.
Hum Mol Genet ; 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31423533

RESUMO

INTRODUCTION: Stillbirth is the loss of a foetus after 22 weeks of gestation, of which almost half go completely unexplained despite post-mortem. We recently sequenced 35 arrhythmia-associated genes from 70 unexplained stillbirth cases. Our hypothesis was that deleterious mutations in channelopathy genes may have a functional effect in utero that may be pro-arrhythmic in the developing foetus. We observed four heterozygous, nonsynonymous variants in TRPM7, a ubiquitously expressed ion channel known to regulate cardiac development and repolarisation in mice. METHODS: We used site-directed mutagenesis and single-cell patch-clamp to analyse the functional effect of the four stillbirth mutants on TRPM7 ion channel function in heterologous cells. We also used cardiomyocytes derived from human pluripotent stem cells to model the contribution of TRPM7 to action potential morphology. RESULTS: Our results show that two TRPM7 variants, p.G179V and p.T860M lead to a marked reduction in ion channel conductance. This observation was underpinned by a lack of measurable TRPM7 protein expression, which in the case of p.T860M was due to rapid proteasomal degradation. We also report that human hiPSC-derived cardiomyocytes possess measurable TRPM7 currents, however siRNA knockdown did not directly affect action potential morphology. CONCLUSION: TRPM7 variants found in the unexplained stillbirth population adversely affect ion channel function and this may precipitate fatal arrhythmia in utero.

3.
Am J Physiol Cell Physiol ; 317(3): C576-C583, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291141

RESUMO

A murine line haploinsufficient in the cardiac sodium channel has been used to model human Brugada syndrome: a disease causing sudden cardiac death due to lethal ventricular arrhythmias. We explored the effects of cholinergic tone on electrophysiological parameters in wild-type and genetically modified, heterozygous, Scn5a+/- knockout mice. Scn5a+/- ventricular slices showed longer refractory periods than wild-type both at baseline and during isoprenaline challenge. Scn5a+/- hearts also showed lower conduction velocities and increased mean increase in delay than did littermate controls at baseline and blunted responses to isoprenaline challenge. Carbachol exerted limited effects but reversed the effects of isoprenaline with coapplication. Scn5a+/- mice showed a reduction in conduction reserve in that isoprenaline no longer increased conduction velocity, and this was not antagonized by muscarinic agonists.

4.
Physiol Genomics ; 51(8): 323-332, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31172864

RESUMO

Atrial fibrillation is a significant worldwide contributor to cardiovascular morbidity and mortality. Few studies have investigated the differences in gene expression between the left and right atrial appendages, leaving their characterization largely unexplored. In this study, differential gene expression was investigated in atrial fibrillation and sinus rhythm using left and right atrial appendages from the same patients. RNA sequencing was performed on the left and right atrial appendages from five sinus rhythm (SR) control patients and five permanent AF case patients. Differential gene expression in both the left and right atrial appendages was analyzed using the Bioconductor package edgeR. A selection of differentially expressed genes, with relevance to atrial fibrillation, were further validated using quantitative RT-PCR. The distribution of the samples assessed through principal component analysis showed distinct grouping between left and right atrial appendages and between SR controls and AF cases. Overall 157 differentially expressed genes were identified to be downregulated and 90 genes upregulated in AF. Pathway enrichment analysis indicated a greater involvement of left atrial genes in the Wnt signaling pathway whereas right atrial genes were involved in clathrin-coated vesicle and collagen formation. The differing expression of genes in both left and right atrial appendages indicate that there are different mechanisms for development, support and remodeling of AF within the left and right atria.

5.
J Cardiovasc Electrophysiol ; 30(5): 691-701, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30801836

RESUMO

INTRODUCTION: Stochastic trajectory analysis of ranked signals (STAR) is a novel method for mapping arrhythmia. The aim was to describe its development and validation as a mapping tool. METHODS AND RESULTS: The method ranks electrodes in terms of the proportion of the time they lead relative to neighboring electrodes and ascribes a predominant direction of activation between electrodes. This was conceived with the aim of mapping atrial fibrillation (AF) drivers. Validation of this approach was performed in stages. First, in vitro simultaneous multi-electrode array and optical mapping were performed on spontaneously fibrillating HL1 cell cultures, to determine if such a method would be able to determine early sites of activation (ESA). A clinical study acquiring unipolar electrograms using a 64-pole basket for the purposes of STAR mapping in patients undergoing atrial tachycardia (AT) ablation. STAR maps were analyzed by physicians to see if arrhythmia mechanisms could be correctly determined. Mapping was then repeated during atrial pacing. STAR mapping of in vitro activation sequences accurately correlated to the optical maps of planar and rotational activation. Thirty-two ATs were mapped in 25 patients. The ESA accurately identified focal/micro-reentrant ATs and the mechanism of macro-reentrant ATs was effectively demonstrated. STAR method accurately identified four pacing sites in all patients. CONCLUSIONS: This novel STAR method correlated well with the gold standard of optical mapping in vitro and was able to accurately identify AT mechanisms. Further analysis is needed to determine whether the method might be of use mapping AF.

6.
Channels (Austin) ; 12(1): 356-366, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30301404

RESUMO

Potassium currents determine the resting membrane potential and govern repolarisation in cardiac myocytes. Here, we review the various currents in the sinoatrial node focussing on their molecular and cellular properties and their role in pacemaking and heart rate control. We also describe how our recent finding of a novel ATP-sensitive potassium channel population in these cells fits into this picture.

7.
Circ Arrhythm Electrophysiol ; 11(9): e006330, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30354290

RESUMO

Background We explored the hypothesis that increased cholinergic tone exerts its proarrhythmic effects in Brugada syndrome (BrS) through increasing dispersion of transmural repolarization in patients with spontaneous and drug-induced BrS. Methods BrS and supraventricular tachycardia patients were studied after deploying an Ensite Array in the right ventricular outflow tract and a Cardima catheter in the great cardiac vein to record endo and epicardial signals, respectively. S1-S2 restitution curves from the right ventricular apex were conducted at baseline and after edrophonium challenge to promote increased cholinergic tone. The local unipolar electrograms were then analyzed to study transmural conduction and repolarization dynamics. Results The study included 8 BrS patients (5 men:3 women; mean age, 56 years) and 8 controls patients with supraventricular tachycardia (5 men:3 women; mean age, 48 years). Electrophysiological studies in controls demonstrated shorter endocardial than epicardial right ventricular activation times (mean difference: 26 ms; P<0.001). In contrast, patients with BrS showed longer endocardial than epicardial activation time (mean difference: -15 ms; P=0.001). BrS hearts, compared with controls, showed significantly larger transmural gradients in their activation recovery intervals (mean intervals, 20.5 versus 3.5 ms; P<0.01), with longer endocardial than epicardial activation recovery intervals. Edrophonium challenge increased such gradients in both controls (to a mean of 16 ms [ P<0.001]) and BrS (to 29.7 ms; P<0.001). However, these were attributable to epicardial and endocardial activation recovery interval prolongations in control and BrS hearts, respectively. Dynamic changes in repolarization gradients were also observed across the BrS right ventricular wall in BrS. Conclusions Differential contributions of conduction and repolarization were identified in BrS which critically modulated transmural dispersion of repolarization with significant cholinergic effects only identified in the patients with BrS. This has important implications for explaining the proarrhythmic effects of increased vagal tone in BrS, as well as evaluating autonomic modulation and epicardial ablation as therapeutic strategies.

8.
Circ Arrhythm Electrophysiol ; 11(10): e006740, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30354404

RESUMO

BACKGROUND: Glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular outcomes in patients with type 2 diabetes mellitus. However, systemic actions of these agents cause sympathetic activation, which is generally considered to be detrimental in cardiovascular disease. Despite significant research interest in cardiovascular biology of GLP-1, the presence of GLP-1R in ventricular cardiomyocytes remains a controversial issue, and the effects of this peptide on the electrical properties of intact ventricular myocardium are unknown. We sought to determine the effects of GLP-1R agonist exendin-4 (Ex4) on ventricular action potential duration (APD) and susceptibility to ventricular arrhythmia in the rat heart in vivo and ex vivo. METHODS: Ventricular monophasic action potentials were recorded in anaesthetized (urethane) rats in vivo and isolated perfused rat hearts during sinus rhythm and ventricular pacing. RESULTS: In vivo, systemic administration of Ex4 (5 µg/kg intravenously) increased heart rate, and this effect was abolished by ß-adrenoceptor blockade. Despite causing sympathetic activation, Ex4 increased APD at 90% repolarization during ventricular pacing by 7% ( P=0.044; n=6) and reversed the effect of ß-adrenoceptor agonist dobutamine on APD at 90% repolarization. In isolated perfused hearts, Ex4 (3 nmol/L) increased APD at 90% repolarization by 14% ( P=0.015; n=6) with no effect on heart rate. Ex4 also reduced ventricular arrhythmia inducibility in conditions of ß-adrenoceptor stimulation with isoproterenol. Ex4 effects on APD and ventricular arrhythmia susceptibility were prevented in conditions of muscarinic receptor blockade or inhibition of nitric oxide synthase. CONCLUSIONS: These data demonstrate that GLP-1R activation effectively opposes the effects of ß-adrenoceptor stimulation on cardiac ventricular excitability and reduces ventricular arrhythmic potential. The effect of GLP-1R activation on the ventricular myocardium is indirect, mediated by acetylcholine and nitric oxide and, therefore, can be explained by stimulation of cardiac parasympathetic (vagal) neurons.

9.
J Cardiovasc Dev Dis ; 5(4)2018 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-30249045

RESUMO

Haploinsufficiency of the T-box transcription factor TBX1 is responsible for many features of 22q11.2 deletion syndrome. Tbx1 is expressed dynamically in the pharyngeal apparatus during mouse development and Tbx1 homozygous mutants display numerous severe defects including abnormal cranial ganglion formation and neural crest cell defects. These abnormalities prompted us to investigate whether parasympathetic (vagal) innervation of the heart was affected in Tbx1 mutant embryos. In this report, we used an allelic series of Tbx1 mouse mutants, embryo tissue explants and cardiac electrophysiology to characterise, in detail, the function of Tbx1 in vagal innervation of the heart. We found that total nerve branch length was significantly reduced in Tbx1+/- and Tbx1neo2/- mutant hearts expressing 50% and 15% levels of Tbx1. We also found that neural crest cells migrated normally to the heart of Tbx1+/-, but not in Tbx1neo2 mutant embryos. In addition, we showed that cranial ganglia IXth and Xth were fused in Tbx1neo2/- but neuronal differentiation appeared intact. Finally, we used telemetry to monitor heart response to carbachol, a cholinergic receptor agonist, and found that heart rate recovered more quickly in Tbx1+/- animals versus controls. We speculate that this condition of decreased parasympathetic drive could result in a pro-arrhythmic substrate in some 22q11.2DS patients.

10.
Compr Physiol ; 8(4): 1463-1511, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30215858

RESUMO

ATP sensitive potassium channels (KATP ) are so named because they open as cellular ATP levels fall. This leads to membrane hyperpolarization and thus links cellular metabolism to membrane excitability. They also respond to MgADP and are regulated by a number of cell signaling pathways. They have a rich and diverse pharmacology with a number of agents acting as specific inhibitors and activators. KATP channels are formed of pore-forming subunits, Kir6.1 and Kir6.2, and a large auxiliary subunit, the sulfonylurea receptor (SUR1, SUR2A, and SUR2B). The Kir6.0 subunits are a member of the inwardly rectifying family of potassium channels and the sulfonylurea receptor is part of the ATP-binding cassette family of proteins. Four SURs and four Kir6.x form an octameric channel complex and the association of a particular SUR with a specific Kir6.x subunit constitutes the KATP current in a particular tissue. A combination of mutagenesis work combined with structural studies has identified how these channels work as molecular machines. They have a variety of physiological roles including controlling the release of insulin from pancreatic ß cells and regulating blood vessel tone and blood pressure. Furthermore, mutations in the genes underlie human diseases such as congenital diabetes and hyperinsulinism. Additionally, opening of these channels is protective in a number of pathological conditions such as myocardial ischemia and stroke. © 2018 American Physiological Society. Compr Physiol 8:1463-1511, 2018.

11.
J Cereb Blood Flow Metab ; : 271678X18780602, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29862863

RESUMO

KIR6.1 (KCNJ8) is a subunit of ATP sensitive potassium channel (KATP) that plays an important role in the control of peripheral vascular tone and is highly expressed in brain contractile cells (vascular smooth muscle cells and pericytes). This study determined the effect of global deletion of the KIR6.1 subunit on cerebral blood flow, neurovascular coupling and cerebral oxygenation in mice. In KIR6.1 deficient mice resting cerebral blood flow and brain parenchymal partial pressure of oxygen ( PO2) were found to be markedly lower compared to that in their wildtype littermates. However, cortical blood oxygen level dependent responses triggered by visual stimuli were not affected in conditions of KIR6.1 deficiency. These data suggest that KATP channels containing KIR6.1 subunit are critically important for the maintenance of normal cerebral perfusion and parenchymal PO2 but play no significant role in the mechanisms underlying functional changes in brain blood flow.

12.
Circ Genom Precis Med ; 11(1): e001817, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29874177

RESUMO

BACKGROUND: Although stillbirth is a significant health problem worldwide, the definitive cause of death remains elusive in many cases, despite detailed autopsy. In this study of partly explained and unexplained stillbirths, we used next-generation sequencing to examine an extended panel of 35 candidate genes known to be associated with ion channel disorders and sudden cardiac death. METHODS AND RESULTS: We examined tissue from 242 stillbirths (≥22 weeks), including those where no definite cause of death could be confirmed after a full autopsy. We obtained high-quality DNA from 70 cases, which were then sequenced for a custom panel of 35 genes, 12 for inherited long- and short-QT syndrome genes (LQT1-LQT12 and SQT1-3), and 23 additional candidate genes derived from genome-wide association studies. We examined the functional significance of a selected variant by patch-clamp electrophysiological recording. No predicted damaging variants were identified in KCNQ1 (LQT1) or KCNH2 (LQT2). A rare putative pathogenic variant was found in KCNJ2(LQT7) in 1 case, and several novel variants of uncertain significance were observed. The KCNJ2 variant (p. R40Q), when assessed by whole-cell patch clamp, affected the function of the channel. There was no significant evidence of enrichment of rare predicted damaging variants within any of the candidate genes. CONCLUSIONS: Although a causative link is unclear, 1 putative pathogenic and variants of uncertain significance variant resulting in cardiac channelopathies was identified in some cases of otherwise unexplained stillbirth, and these variants may have a role in fetal demise. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01120886.

13.
Nat Commun ; 9(1): 1947, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769521

RESUMO

Impaired capacity to increase heart rate (HR) during exercise (ΔHRex), and a reduced rate of recovery post-exercise (ΔHRrec) are associated with higher cardiovascular mortality rates. Currently, the genetic basis of both phenotypes remains to be elucidated. We conduct genome-wide association studies (GWASs) for ΔHRex and ΔHRrec in ~40,000 individuals, followed by replication in ~27,000 independent samples, all from UK Biobank. Six and seven single-nucleotide polymorphisms for ΔHRex and ΔHRrec, respectively, formally replicate. In a full data set GWAS, eight further loci for ΔHRex and nine for ΔHRrec are genome-wide significant (P ≤ 5 × 10-8). In total, 30 loci are discovered, 8 being common across traits. Processes of neural development and modulation of adrenergic activity by the autonomic nervous system are enriched in these results. Our findings reinforce current understanding of HR response to exercise and recovery and could guide future studies evaluating its contribution to cardiovascular risk prediction.

14.
Eur Heart J ; 39(43): 3879-3892, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29741611

RESUMO

Aims: Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results: CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 [(p.R453C-ß-myosin heavy chain (MHC)] in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias, and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion: Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-ßMHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and αMHC to energy-efficient ßMHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7: MYH6 and mutant: wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms.

15.
J Biol Chem ; 293(23): 8912-8921, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29666184

RESUMO

ATP-sensitive potassium channels (KATP) contribute to membrane currents in many tissues, are responsive to intracellular metabolism, and open as ATP falls and ADP rises. KATP channels are widely distributed in tissues and are prominently expressed in the heart. They have generally been observed in ventricular tissue, but they are also expressed in the atria and conduction tissues. In this study, we focused on the contribution and role of the inwardly rectifying KATP channel subunit, Kir6.1, in the sinoatrial node (SAN). To develop a murine, conduction-specific Kir6.1 KO model, we selectively deleted Kir6.1 in the conduction system in adult mice (cKO). Electrophysiological data in single SAN cells indicated that Kir6.1 underlies a KATP current in a significant proportion of cells and influences early repolarization during pacemaking, resulting in prolonged cycle length. Implanted telemetry probes to measure heart rate and electrocardiographic characteristics revealed that the cKO mice have a slow heart rate, with episodes of sinus arrest in some mice. The PR interval (time between the onset of the P wave to the beginning of QRS complex) was increased, suggesting effects on the atrioventricular node. Ex vivo studies of whole heart or dissected heart regions disclosed impaired adaptive responses of the SAN to hypoxia, and this may have had long-term pathological consequences in the cKO mice. In conclusion, Kir6.1-containing KATP channels in the SAN have a role in excitability, heart rate control, and the electrophysiological adaptation of the SAN to hypoxia.

16.
Nat Commun ; 9(1): 1021, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523849

RESUMO

Hyperproliferative keratinocytes induced by trauma, hyperkeratosis and/or inflammation display molecular signatures similar to those of palmoplantar epidermis. Inherited gain-of-function mutations in RHBDF2 (encoding iRHOM2) are associated with a hyperproliferative palmoplantar keratoderma and squamous oesophageal cancer syndrome (termed TOC). In contrast, genetic ablation of rhbdf2 in mice leads to a thinning of the mammalian footpad, and reduces keratinocyte hyperproliferation and migration. Here, we report that iRHOM2 is a novel target gene of p63 and that both p63 and iRHOM2 differentially regulate cellular stress-associated signalling pathways in normal and hyperproliferative keratinocytes. We demonstrate that p63-iRHOM2 regulates cell survival and response to oxidative stress via modulation of SURVIVIN and Cytoglobin, respectively. Furthermore, the antioxidant compound Sulforaphane downregulates p63-iRHOM2 expression, leading to reduced proliferation, inflammation, survival and ROS production. These findings elucidate a novel p63-associated pathway that identifies iRHOM2 modulation as a potential therapeutic target to treat hyperproliferative skin disease and neoplasia.

17.
PLoS One ; 13(2): e0193039, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29432496

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0183732.].

18.
Circ Genom Precis Med ; 11(2): e001813, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29440116

RESUMO

BACKGROUND: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. METHODS AND RESULTS: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. CONCLUSIONS: We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects.

20.
Am J Physiol Cell Physiol ; 314(5): C616-C626, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29342363

RESUMO

G protein-gated inwardly rectifying K+ (GIRK) channels are the major inwardly rectifying K+ currents in cardiac atrial myocytes and an important determinant of atrial electrophysiology. Inhibitory G protein α-subunits can both mediate activation via acetylcholine but can also suppress basal currents in the absence of agonist. We studied this phenomenon using whole cell patch clamping in murine atria from mice with global genetic deletion of Gαi2, combined deletion of Gαi1/Gαi3, and littermate controls. We found that mice with deletion of Gαi2 had increased basal and agonist-activated currents, particularly in the right atria while in contrast those with Gαi1/Gαi3 deletion had reduced currents. Mice with global genetic deletion of Gαi2 had decreased action potential duration. Tissue preparations of the left atria studied with a multielectrode array from Gαi2 knockout mice showed a shorter effective refractory period, with no change in conduction velocity, than littermate controls. Transcriptional studies revealed increased expression of GIRK channel subunit genes in Gαi2 knockout mice. Thus different G protein isoforms have differential effects on GIRK channel behavior and paradoxically Gαi2 act to increase basal and agonist-activated GIRK currents. Deletion of Gαi2 is potentially proarrhythmic in the atria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA