Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zoolog Sci ; 37(3): 232-239, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32549537

RESUMO

The Japanese sparrowhawk Accipiter gularis is a small raptor that breeds in Northeast Asia. The species consists of the widespread and mostly migratory subspecies A. g. gularis that is common in East Asia, including Japan, and the resident and endangered subspecies A. g. iwasakii which inhabits the Ryukyu and Yaeyama Islands in Okinawa, southern Japan. Given the minimal knowledge about the migration of the species, in this study we sought to compare the genetic variation of the populations breeding in Japan with those migrating through Southeast Asia. We sequenced 761 bp of mitochondrial DNA Control Region from each of 21 A. gularis collected during the breeding season in Japan and from 20 individuals intercepted on migration in Thailand. We detected 26 haplotypes among the 41 individuals which differed significantly between Japan and Thailand. Migrants in Thailand were presumed to have originated from a wide area in Eastern Eurasia. The phylogenetic and network analyses demonstrated that the haplotypes of all A. g. gularis detected in Japan were genetically close. Moreover, the Okinawa haplotypes of A. g. iwasakii were clustered with moderate genetic variation. The information presented here can be used towards implementing future conservation actions.

2.
J Pharmacol Exp Ther ; 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561685

RESUMO

Renal inflammation is a final common pathway of chronic kidney disease (CKD), and its progression can be used to effectively gauge the degree of renal dysfunction. Inflammatory mechanisms contribute to glomerulosclerosis and tubulointerstitial fibrosis, which are hallmarks of CKD leading to end-stage renal disease. Receptor-interacting protein kinase 2 (RIP2) is largely committed to nucleotide-binding oligomerization domain signaling as a direct effector and transmits nuclear factor-κB (NF-κB)-mediated proinflammatory cytokine production. In the present study, we hypothesized that if inflammation via RIP2 and NF-κB signaling plays an important role in renal failure, then the anti-inflammatory effect of RIP2 inhibitors should be effective in improving CKD. To determine its pharmacologic potency, we investigated the renoprotective properties of the novel RIP2 inhibitor AS3334034 (7-methoxy-6-(2-methylpropane-2-sulfonyl)-N-(4-methyl-1H-pyrazol-3-yl)quinolin-4-amine) in uninephrectomized adriamycin-induced CKD rats. Six weeks' repeated administration of AS3334034 (10 mg/kg, once daily) significantly reduced urinary protein excretion and prevented the development of glomerulosclerosis and tubulointerstitial fibrosis. In addition, AS3334034 showed beneficial effects on renal function, as demonstrated by a decrease in levels of plasma creatinine and blood urea nitrogen and attenuation of a decline in creatinine clearance. Furthermore, AS3334034 significantly attenuated inflammation, renal apoptosis, and glomerular podocyte loss. These results suggest that the RIP2 inhibitor AS3334034 suppresses the progression of chronic renal failure via an anti-inflammatory effect, and is therefore potentially useful in treating patients with CKD. SIGNIFICANCE STATEMENT: The receptor-interacting protein kinase 2 (RIP2) inhibitor AS3334034 suppresses the progression of chronic renal failure via an anti-inflammatory effect, suggesting that the nucleotide-binding oligomerization domain (NOD)-RIP2 axis might play a crucial role in pathogenesis of inflammatory kidney diseases. AS3334034 is expected to be potentially useful in the treatment of patients with chronic kidney disease.

3.
Zoolog Sci ; 36(6): 471-478, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31833318

RESUMO

The nominotypical subspecies of the Eastern buzzard (Buteo japonicus japonicus; BJJ) is a common raptor inhabiting East Asia and Japan. Another subspecies, B. j. toyoshimai (BJT), inhabits only the Bonin Islands of the Ogasawara Islands, where there are only an estimated 85 breeding pairs. Because of this low population size, this subspecies is classified as endangered (class IB) in Japan. The aims of the present study were to examine genetic differences between BJJ and BJT, determine the genetic structure of the Eastern Buzzard, and assess genetic diversity within each subspecies. We sequenced 1526 bp within the control region of the mtDNA of 10 BJJ individuals during the breeding season in four sites; similarly, we sequenced 23 BJJ individuals during winter in three sites. We detected 24 haplotypes among the 33 individuals. In a similar analysis performed with 12 BJT individuals, three haplotypes were detected. The phylogenetic analysis showed that BJJ and BJT have diverged into distinct clades, supporting the genetic differentiation between the subspecies. Network and mismatch distribution analyses indicated that BJJ may have experienced population expansion. In addition, comparisons with other raptors revealed a high degree of genetic diversity in the BJJ population. In contrast, the genetic diversity of the BJT population is lower than that in other raptors. Our results indicated that it is necessary to protect BJT to prevent the reduction in its genetic diversity.


Assuntos
Distribuição Animal , Falconiformes/genética , Variação Genética , Animais , Falconiformes/fisiologia , Haplótipos , Japão , Filogenia , Estações do Ano
4.
Zoolog Sci ; 36(1): 77-81, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116541

RESUMO

The intestinal microbiome is known to affect host health through various effects on nutrition and immunity. The oriental honey buzzard (OHB) is a raptor that feeds on bees and wasps. Due to its restricted diet, we reasoned that the OHB may have a unique microbiome. The aim of this study was to characterize the structure of the intestinal flora of oriental honey buzzards and to investigate the difference of intestinal bacterial flora between individuals in the wild and those reared in captivity. We investigated the intestinal microbiome of seven wild buzzards (Wild), one zoo-reared (Zoo), and one individual reared in captivity for one month (Rearing). Average operational taxonomic units in Wild and Rearing were 69.4 and 113, respectively. Diversity indices such as ACE, Chao 1, Shannon, and Alpha were significantly lower in the Wild than in the Rearing samples. These results suggest that the variety of Wild microbiome is remarkably low. At the phylum level, the composition of the microbiome was similar in all three groups, with firmicutes and bacteroidetes predominating. The third most abundant bacterium in Wild was Proteobacteria, whereas it was Actinobacteria in Rearing and unclassified bacteria in Zoo. Thus, microbiome composition is affected even with just one month of human rearing.


Assuntos
Bactérias/classificação , Falconiformes/microbiologia , Microbioma Gastrointestinal , Animais , Animais de Zoológico/microbiologia , Dieta/veterinária , Himenópteros , Japão , RNA Ribossômico 16S
5.
Brain Res ; 1714: 99-110, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807736

RESUMO

This study investigated neural projections from the parabrachial nucleus (PBN), a gustatory and visceral processing area in the brainstem, to the ventral tegmental area (VTA) in the midbrain. The VTA contains a large population of dopaminergic neurons that have been shown to play a role in reward processing. Anterograde neural tracing methods were first used to confirm that a robust projection from the caudal PBN terminates in the dorsal VTA; this projection was larger on the contralateral side. In the next experiment, we combined dual retrograde tracing from the VTA and the gustatory ventral posteromedial thalamus (VPMpc) with taste-evoked Fos protein expression, which labels activated neurons. Mice were stimulated through an intraoral cannula with sucrose, quinine, or water, and PBN sections were processed for immunofluorescent detection of Fos and retrograde tracers. The distribution of tracer-labeled PBN neurons demonstrated that the populations of cells projecting to the VTA or VPMpc are largely independent. Quantification of cells double labeled for Fos and either tracer demonstrated that sucrose and quinine were effective in activating both pathways. These results indicate that information about both appetitive and aversive tastes is delivered to a key midbrain reward interface via direct projections from the PBN.

6.
Zoolog Sci ; 33(1): 63-72, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26853870

RESUMO

Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.


Assuntos
Sistemas de Identificação Animal/instrumentação , Migração Animal/fisiologia , Anseriformes/fisiologia , Estações do Ano , Astronave , Sistemas de Identificação Animal/métodos , Animais , Japão , Fatores de Tempo
7.
EMBO J ; 34(21): 2652-70, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26423604

RESUMO

Paternal behavior is not innate but arises through social experience. After mating and becoming fathers, male mice change their behavior toward pups from infanticide to paternal care. However, the precise brain areas and circuit mechanisms connecting these social behaviors are largely unknown. Here we demonstrated that the c-Fos expression pattern in the four nuclei of the preoptic-bed nuclei of stria terminalis (BST) region could robustly discriminate five kinds of previous social behavior of male mice (parenting, infanticide, mating, inter-male aggression, solitary control). Specifically, neuronal activation in the central part of the medial preoptic area (cMPOA) and rhomboid nucleus of the BST (BSTrh) retroactively detected paternal and infanticidal motivation with more than 95% accuracy. Moreover, cMPOA lesions switched behavior in fathers from paternal to infanticidal, while BSTrh lesions inhibited infanticide in virgin males. The projections from cMPOA to BSTrh were largely GABAergic. Optogenetic or pharmacogenetic activation of cMPOA attenuated infanticide in virgin males. Taken together, this study identifies the preoptic-BST nuclei underlying social motivations in male mice and reveals unexpected complexity in the circuit connecting these nuclei.


Assuntos
Comportamento Paterno , Área Pré-Óptica/fisiologia , Animais , Comportamento Animal , Mapeamento Encefálico , Neurônios GABAérgicos/metabolismo , Masculino , Camundongos , Área Pré-Óptica/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
8.
Anal Chim Acta ; 865: 39-52, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25732583

RESUMO

The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman, tabun and nitrogen mustards were higher. Some CWA simulants and organic solvents gave the ion peaks eluting at the similar positions of the CWAs, resulting in false positive alarms.


Assuntos
Amônia/química , Substâncias para a Guerra Química/análise , Temperatura , Substâncias para a Guerra Química/química , Espectrometria de Massas , Pressão , Volatilização
9.
Artigo em Inglês | MEDLINE | ID: mdl-25120438

RESUMO

The present study investigated a subpopulation of neurons in the mouse parabrachial nucleus (PbN), a gustatory and visceral relay area in the brainstem, that project to the lateral hypothalamus (LH). We made injections of the retrograde tracer Fluorogold (FG) into LH, resulting in fluorescent labeling of neurons located in different regions of the PbN. Mice were stimulated through an intraoral cannula with one of seven different taste stimuli, and PbN sections were processed for immunohistochemical detection of the immediate early gene c-Fos, which labels activated neurons. LH projection neurons were found in all PbN subnuclei, but in greater concentration in lateral subnuclei, including the dorsal lateral subnucleus (dl). Fos-like immunoreactivity (FLI) was observed in the PbN in a stimulus-dependent pattern, with the greatest differentiation between intraoral stimulation with sweet (0.5 M sucrose) and bitter (0.003 M quinine) compounds. In particular, sweet and umami-tasting stimuli evoked robust FLI in cells in the dl, whereas quinine evoked almost no FLI in cells in this subnucleus. Double-labeled cells were also found in the greatest quantity in the dl. Overall, these results support the hypothesis that the dl contains direct a projection to the LH that is activated preferentially by appetitive compounds; this projection may be mediated by taste and/or postingestive mechanisms.


Assuntos
Trato Gastrointestinal/inervação , Região Hipotalâmica Lateral/fisiologia , Boca/inervação , Vias Neurais/fisiologia , Neurônios/fisiologia , Núcleos Parabraquiais/citologia , Animais , Contagem de Células , Feminino , Lateralidade Funcional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinina/farmacologia , Estilbamidinas/metabolismo , Estimulação Química
10.
Artigo em Inglês | MEDLINE | ID: mdl-23565078

RESUMO

There is ample evidence that the cerebellum plays an important role in coordinating both respiratory and orofacial movements. However, the pathway by which the cerebellum engages brainstem substrates underlying these movements is not well understood. We used tract-tracing techniques in mice to show that neurons in the medial deep cerebellar nucleus (mDCN) project directly to these putative substrates. Injection of an anterograde tracer into the mDCN produced terminal labeling in the ventromedial medullary reticular formation, which was stronger on the contralateral side. Correspondingly, injection of retrograde tracers into these same areas resulted in robust neuronal cell labeling in the contralateral mDCN. Moreover, injection of two retrograde tracers at different rostral-caudal brainstem levels resulted in a subset of double-labeled cells, indicating that single mDCN neurons collateralize to multiple substrates. Using an awake and behaving recording preparation, we show that spiking activity in mDCN neurons is correlated with respiratory and orofacial behaviors, including whisking and fluid licking. Almost half of the recorded neurons showed activity correlated with more than one behavior, suggesting that these neurons may in fact modulate multiple brainstem substrates. Collectively, these results describe a potential pathway through which the cerebellum could modulate and coordinate respiratory and orofacial behaviors.


Assuntos
Potenciais de Ação/fisiologia , Núcleos Cerebelares/fisiologia , Músculos Faciais/fisiologia , Bulbo/fisiologia , Mecânica Respiratória/fisiologia , Vibrissas/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia
11.
J Neurophysiol ; 108(8): 2179-90, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22832571

RESUMO

We investigated sweet-bitter and umami-bitter mixture taste interactions by presenting sucrose or umami stimuli mixed with quinine hydrochloride (QHCl) while recording single-unit activity of neurons in the parabrachial nucleus (PbN) of urethane-anesthetized C57BL/6J mice. A total of 70 taste-responsive neurons were classified according to which stimulus evoked the greatest net response (36 sucrose-best, 19 NaCl-best, 6 citric acid-best, and 9 QHCl-best). Although no neurons responded best to monopotassium glutamate (MPG) or inosine 5'-monophosphate (IMP), the combination of these two stimuli evoked a synergistic response (i.e., response > 120% of the sum of the component responses) in all sucrose-best and some NaCl-best neurons (n = 43). Adding QHCl to sucrose or MPG + IMP resulted in suppression of the response (responses to mixture < responses to the more effective component) in 41 of 43 synergistic neurons. Neurons showing QHCl suppression were classified into two types: an "MS1" type (n = 27) with suppressed responses both to sucrose and MPG + IMP and an "MS2" type (n = 14) that showed suppressed responses only to sucrose. No neuron displayed suppressed responses to MPG or IMP alone. The suppression ratio (1 - mixture response/sucrose or MPG + IMP response) of sucrose and MPG + IMP in MS1 neurons had a weak positive correlation (r = 0.36). The pattern of reconstructed recording sites of neuron types suggested chemotopic organization in the PbN. Although a peripheral basis for QHCl suppression has been demonstrated, our results suggest that convergence in the PbN plays a role in shaping responses to taste mixtures.


Assuntos
Neurônios/fisiologia , Paladar/fisiologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Potenciais Somatossensoriais Evocados , Glutamatos , Inosina Monofosfato , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/classificação , Quinina , Cloreto de Sódio , Sacarose
12.
PLoS One ; 7(5): e38169, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675444

RESUMO

Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h(2)≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F(1) hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na(+)/K(+)-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo.


Assuntos
Movimento , Periodicidade , Locos de Características Quantitativas , ATPase Trocadora de Sódio-Potássio/genética , Animais , Mapeamento Cromossômico , Cromossomos de Mamíferos , Feminino , Regulação da Expressão Gênica , Ligação Genética , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Reprodutibilidade dos Testes , Especificidade da Espécie
13.
Pharmacol Biochem Behav ; 102(2): 329-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609796

RESUMO

Hyperactivity of the hypothalamic pituitary-adrenal (HPA) axis plays a role in the pathophysiology of major depressive disorder (MDD). Recent studies suggest the role of the glutamatergic system in the pathophysiology of MDD, and N-methyl-D-aspartate (NMDA) receptor antagonists have shown antidepressant effects in both preclinical and clinical studies. However, little is known about the role of adrenocorticotropic hormone (ACTH) specifically in the glutamatergic response to HPA axis activation. Glutamate is an NMDA receptor agonist, and glycine and D-serine act as co-agonists. Here, we measured brain concentrations of these amino acids in rats given repeated administration of ACTH (100 µg/rat/day, sc, for 14 days). Further, we also evaluated behavioral effects of memantine, a non-competitive NMDA antagonist, on immobility time in the forced swimming test and on locomotor activity in ACTH-treated rats. Compared with control rats, glutamine, glycine, L-serine, and D-serine levels were increased in the hippocampus of ACTH-treated rats; glutamate, glutamine, glycine, L-serine, and D-serine were increased in the cerebellum; and glutamine and glycine were increased in the frontal cortex and striatum, all with statistical significance. Remarkably, these increases in agonists and co-agonists might have led to the augmentation of NMDA receptor activity. ACTH treatment increased immobility time in the forced swimming test and decreased locomotor activity in rats. On the contrary, memantine (10 mg/kg, ip) significantly decreased immobility time in the forced swimming test and increased locomotor activity in ACTH-treated rats. Furthermore, imipramine (15 mg/kg, ip) did not alter immobility time in the forced swimming test whereas this drug significantly decreased locomotor activity in ACTH-treated rats. These results suggest that depressive-like behaviors by chronic ACTH treatment could be blocked by memantine.


Assuntos
Hormônio Adrenocorticotrópico/farmacologia , Comportamento Animal , Depressão/induzido quimicamente , Memantina/farmacologia , Hormônio Adrenocorticotrópico/antagonistas & inibidores , Animais , Depressão/prevenção & controle , Masculino , Ratos , Ratos Wistar
14.
J Neurophysiol ; 107(6): 1545-55, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22170968

RESUMO

Umami is considered to be the fifth basic taste quality and is elicited by glutamate. The mouse is an ideal rodent model for the study of this taste quality because of evidence that suggests that this species, like humans, may sense umami-tasting compounds as unique from other basic taste qualities. We performed single-unit recording of taste responses in the parabrachial nucleus (PbN) of anesthetized C57BL/6J mice to investigate the central representation of umami taste. A total of 52 taste-responsive neurons (22 sucrose-best, 19 NaCl-best, 5 citric acid-best, and 6 quinine-best) were recorded from stimulation period with a large panel of basic and umami-tasting stimuli. No neuron responded best to monopotassium glutamate (MPG) or inosine 5'-monophosphate (IMP), suggesting convergence of input in the central nervous system. Synergism induced by an MPG-IMP mixture was observed in all sucrose-best and some NaCl-best neurons that possessed strong sensitivity to sucrose. In more than half of sucrose-best neurons, the MPG-IMP mixture evoked stronger responses than those elicited by their best stimulus. Furthermore, hierarchical cluster analysis and multidimensional analysis indicated close similarity between sucrose and the MPG-IMP mixture. These results strongly suggest the mixture tastes sweet to mice, a conclusion consistent with previous findings that show bidirectional generalization of conditioned taste aversion between sucrose and umami mixtures, and suppression of taste responses to both sucrose and mixtures by the antisweet polypeptide gurmarin in the chorda tympani nerve. The distribution pattern of reconstructed recording sites of specific neuron types suggested chemotopic organization in the PbN.


Assuntos
Inosina Monofosfato/farmacologia , Neurônios/efeitos dos fármacos , Ponte/efeitos dos fármacos , Glutamato de Sódio/farmacologia , Papilas Gustativas/efeitos dos fármacos , Percepção Gustatória/efeitos dos fármacos , Animais , Ácido Cítrico/farmacologia , Masculino , Camundongos , Neurônios/fisiologia , Ponte/fisiologia , Quinina/farmacologia , Sacarose/farmacologia , Paladar/efeitos dos fármacos , Paladar/fisiologia , Papilas Gustativas/fisiologia , Percepção Gustatória/fisiologia
15.
Pharmacol Biochem Behav ; 100(4): 688-704, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21536063

RESUMO

Accumulating evidence suggests that the glutamatergic system plays important roles in the pathophysiology and treatment of major depressive disorder (MDD). Abnormalities in the glutamatergic system are definitely observed in this disorder, and certain glutamatergic agents exhibit antidepressant effects in patients with MDD. In this review, we summarize the preclinical findings suggesting the involvement of glutamate signaling in the pathophysiology and treatment of MDD. Preclinical animal models for depression are often characterized by changes in molecules related to glutamatergic signaling. Some antidepressants exert their effects by affecting glutamatergic system components in animals. Animals with genetically modified glutamatergic function exhibit depression-like behaviors or anti-depressive behavior. In addition, several types of glutamatergic agents have shown antidepressant-like effects in preclinical models for depression. Many types of glutamate receptors (NMDA, AMPA, and metabotropic glutamate receptors) or transporters appear to be involved in the etiology of depression or in the mechanisms of action of antidepressants. These functional proteins related to glutamate signal transduction are potential targets for a new generation of antidepressants with fast-onset effects, such as the NMDA antagonist ketamine.


Assuntos
Depressão/metabolismo , Glutamatos/metabolismo , Transdução de Sinais , Animais , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/terapia , Eletroconvulsoterapia
16.
Surg Endosc ; 25(4): 1176-81, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20844896

RESUMO

BACKGROUND: The literature contains evidence that Roux-en-Y gastric bypass (RYGB) surgery has an effect in humans on taste and preference for carbohydrate-rich foods. This study tested the hypothesis that RYGB affects sweet taste behavior using a rat model. METHODS: Male Sprague-Dawley rats underwent either RYGB or sham surgery. Then 4 weeks after surgery, the rats were given taste-salient, brief-access lick tests with a series of sucrose concentrations. RESULTS: The RYGB rats, but not the sham rats, lost weight over the 5-week postoperative period. The RYGB rats showed a significant decrease in mean licks for the highest concentration of sucrose (0.25-1.0 mol/l) but not for the low concentrations of sucrose or water. CONCLUSIONS: The findings showed that RYGB surgery affected sweet taste behavior in rats, with postsurgical rats having lower sensitivity or avidity for sucrose than sham-treated control rats. This finding is similar to human reports that sweet taste and preferences for high-caloric foods are altered after bypass surgery.


Assuntos
Carboidratos da Dieta , Preferências Alimentares/fisiologia , Derivação Gástrica , Sacarose , Animais , Masculino , Concentração Osmolar , Período Pós-Operatório , Ratos , Ratos Sprague-Dawley , Paladar , Perda de Peso
17.
Neurosci Res ; 67(3): 228-35, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20302893

RESUMO

In the present study we examined the effects of neonatal orosensory deprivation on taste-elicited gustatory activity in the rat parabrachial nucleus (PBN) using the functional anatomical marker c-Fos. Animals in three groups (GG, GO and GM) received gastric cannula implantation surgery on postnatal day 9 (P9). Animals in the fourth group (MR) did not receive any surgery. GG rats were fed by infusion of artificial milk directly into the stomach. GO rats were fed by intraoral infusion of artificial milk. GM and MR rats were reared by their mother with free access to mother's milk, water and rat chow. Rats from all groups were similar in body weight and length by P21. On P21 rats in all groups were intraorally presented with 0.5M sucrose solution and the brains were extracted and processed for c-Fos immunohistochemistry. Taste-elicited c-Fos expression in both the gustatory waist area, and the external lateral subnucleus of the PBN in rats in the GG group was significantly more robust than in the other three groups. These findings suggest a substantial alteration in orosensory-evoked neuronal response in this nucleus, due to sensory or motor deprivation during a critical developmental stage.


Assuntos
Animais Recém-Nascidos/fisiologia , Genes fos/genética , Ponte/fisiologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Privação Sensorial/fisiologia , Paladar/genética , Paladar/fisiologia , Animais , Animais Lactentes , Peso Corporal/fisiologia , Comportamento Consumatório/fisiologia , Expressão Gênica/fisiologia , Crescimento/fisiologia , Imuno-Histoquímica , Intubação Gastrointestinal , Masculino , Ponte/metabolismo , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/fisiologia , Ganho de Peso/fisiologia
18.
Synapse ; 63(10): 930-4, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19588469

RESUMO

Dopaminergic stabilizers are recognized as compounds that can either enhance or antagonize dopamine (DA)-dependent behaviors depending on the prevailing dopaminergic tone. The dopaminergic stabilizer ASP2314 is being tested clinically and has been reported to have antipsychotic effects in a clinical trial as an add on medication. To elucidate the mechanisms of action of this dopaminergic stabilizer, its potency on the functional dopamine D2(High) receptors was examined. In competition with D2 receptors selectively labeled by [3H]domperidone, ASP2314 had a dissociation constant, Ki(High), of 1.62 microM for D2(High) in human cloned D2Long receptors and 0.83 muM for rat homogenized striata. Using the D2 agonist ligand [3H](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol ((+)PHNO), ASP2314 had a high-affinity Ki of 32 nM for D2(High) for rat homogenized striata. ASP2314 stimulated the incorporation of [35S]GTP-gamma-S into rat striata by 50% at 43 nM, and into the cloned D2Long membranes by 50% at 3.2 microM (compared to 100% stimulation by 10 microM dopamine). With similar concentrations of ASP2314 inhibiting the binding of ligands at D2(High) and stimulating [35S]GTP-gamma-S incorporation, the data indicate that the dopaminergic stabilizing action of ASP2314 may be related to the selectivity for the D2(high) state of the D2 receptor.


Assuntos
Ligação Competitiva/efeitos dos fármacos , Dopamina/metabolismo , Piperidinas/farmacologia , Receptores de Dopamina D2/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Clonagem Molecular/métodos , Cricetinae , Cricetulus , Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Masculino , Ligação Proteica/efeitos dos fármacos , Radioisótopos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/genética , Transfecção/métodos , Vitamina K 1/análogos & derivados , Vitamina K 1/metabolismo
19.
J Neurophysiol ; 100(4): 1885-96, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18753330

RESUMO

The supratrigeminal region (SupV) receives abundant orofacial sensory inputs and descending inputs from the cortical masticatory area and contains premotor neurons that target the trigeminal motor nucleus (MoV). Thus it is possible that the SupV is involved in controlling jaw muscle activity via sensory inputs during mastication. We used voltage-sensitive dye, laser photostimulation, patch-clamp recordings, and intracellular biocytin labeling to investigate synaptic transmission from the SupV to jaw-closing and jaw-opening motoneurons in the MoV in brain stem slice preparations from developing rats. Electrical stimulation of the SupV evoked optical responses in the MoV. An antidromic optical response was evoked in the SupV by MoV stimulation, whereas synaptic transmission was suppressed by substitution of external Ca2+ with Mn2+. Photostimulation of the SupV with caged glutamate evoked rapid inward currents in the trigeminal motoneurons. Gramicidin-perforated and whole cell patch-clamp recordings from masseter motoneurons (MMNs) and digastric motoneurons (DMNs) revealed that glycinergic and GABAergic postsynaptic responses evoked in MMNs and DMNs by SupV stimulation were excitatory in P1-P4 neonatal rats and inhibitory in P9-P12 juvenile rats, whereas glutamatergic postsynaptic responses evoked by SupV stimulation were excitatory in both neonates and juveniles. Furthermore, the axons of biocytin-labeled SupV neurons that were antidromically activated by MoV stimulation terminated in the MoV. Our results suggest that inputs from the SupV excite MMNs and DMNs through activation of glutamate, glycine, and GABAA receptors in neonates, whereas glycinergic and GABAergic inputs from the SupV inhibit MMNs and DMNs in juveniles.


Assuntos
Arcada Osseodentária/inervação , Arcada Osseodentária/fisiologia , Músculos da Mastigação/inervação , Músculos da Mastigação/fisiologia , Neurônios Motores/fisiologia , Transmissão Sináptica/fisiologia , Núcleos do Trigêmeo/fisiologia , Envelhecimento/fisiologia , Animais , Eletrofisiologia , Técnicas In Vitro , Músculos da Mastigação/crescimento & desenvolvimento , Estimulação Luminosa , Ratos , Ratos Wistar , Receptores de GABA-A/efeitos dos fármacos , Receptores de Glutamato/efeitos dos fármacos , Receptores da Glicina/fisiologia , Ácido gama-Aminobutírico/fisiologia
20.
Zoolog Sci ; 25(9): 875-81, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19267595

RESUMO

Wild birds, in particular waterfowl, are common reservoirs of low pathogenic avian influenza viruses, and infected individuals could spread the viruses during migrations. We used satellite telemetry to track the spring migration of the mallard ducks ( Anas platyrhynchos ) that winter in Japan. We studied their migration routes, distribution of stopover and breeding sites, and timing of migration movements. We tracked 23 mallards from four different wintering sites. Nine of the 23 mallards reached presumable breeding sites, where migration terminated. The migration routes of the birds greatly differed not only among the wintering sites but also within the same wintering site, although the general feature of the routes was shared among birds within the same wintering site. The mallards used several stopover sites, and they typically stayed for a long period (about one to four weeks) at a site between migration intervals of two to three days. Stopover sites were located in northeast Japan, the eastern coastline of South Korea and North Korea, and the interior of Far Eastern Russia. Mallards from three different wintering sites used a stopover area near the middle part of the Ussuri river in Russia. The terminal sites, which were presumably also breeding sites, were distributed widely over northeast Asia and Far Eastern Russia. These results suggest that mallards that winter in Japan originate from breeding areas widely distributed across eastern Asia. Mallards could potentially transmit avian influenza viruses between Japan and a broad region of northeastern Asia.


Assuntos
Migração Animal , Patos/fisiologia , Astronave , Telemetria , Animais , Japão , Mapas como Assunto , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA