Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 20(9): 1138-1149, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427775

RESUMO

Interleukin (IL)-1R3 is the co-receptor in three signaling pathways that involve six cytokines of the IL-1 family (IL-1α, IL-1ß, IL-33, IL-36α, IL-36ß and IL-36γ). In many diseases, multiple cytokines contribute to disease pathogenesis. For example, in asthma, both IL-33 and IL-1 are of major importance, as are IL-36 and IL-1 in psoriasis. We developed a blocking monoclonal antibody (mAb) to human IL-1R3 (MAB-hR3) and demonstrate here that this antibody specifically inhibits signaling via IL-1, IL-33 and IL-36 in vitro. Also, in three distinct in vivo models of disease (crystal-induced peritonitis, allergic airway inflammation and psoriasis), we found that targeting IL-1R3 with a single mAb to mouse IL-1R3 (MAB-mR3) significantly attenuated heterogeneous cytokine-driven inflammation and disease severity. We conclude that in diseases driven by multiple cytokines, a single antagonistic agent such as a mAb to IL-1R3 is a therapeutic option with considerable translational benefit.

2.
EBioMedicine ; 45: 328-340, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31300344

RESUMO

BACKGROUND: TLR9 agonists are being developed as immunotherapy against malignancies and infections. TLR9 is primarily expressed in B cells and plasmacytoid dendritic cells (pDCs). TLR9 signalling may be critically important for B cell activity in lymph nodes but little is known about the in vivo impact of TLR9 agonism on human lymph node B cells. As a pre-defined sub-study within our clinical trial investigating TLR9 agonist MGN1703 (lefitolimod) treatment in the context of developing HIV cure strategies (NCT02443935), we assessed TLR9 agonist-mediated effects in lymph nodes. METHODS: Participants received MGN1703 for 24 weeks concurrent with antiretroviral therapy. Seven participants completed the sub-study including lymph node resection at baseline and after 24 weeks of treatment. A variety of tissue-based immunologic and virologic parameters were assessed. FINDINGS: MGN1703 dosing increased B cell differentiation; activated pDCs, NK cells, and T cells; and induced a robust interferon response in lymph nodes. Expression of Activation-Induced cytidine Deaminase, an essential regulator of B cell diversification and somatic hypermutation, was highly elevated. During MGN1703 treatment IgG production increased and antibody glycosylation patterns were changed. INTERPRETATION: Our data present novel evidence that the TLR9 agonist MGN1703 modulates human lymph node B cells in vivo. These findings warrant further considerations in the development of TLR9 agonists as immunotherapy against cancers and infectious diseases. FUND: This work was supported by Aarhus University Research Foundation, the Danish Council for Independent Research and the NovoNordisk Foundation. Mologen AG provided study drug free of charge.

3.
AIDS ; 33(8): 1315-1325, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932955

RESUMO

DESIGN: This was an exploratory, single-arm clinical trial that tested the immune enhancement effects of 24-weeks of Toll-like receptor 9 (TLR9) agonist (MGN1703; Lefitolimod; 60 mg × 2 weekly) therapy. METHODS: We enrolled HIV-1-infected individuals on suppressive combination antiretroviral therapy. Safety was assessed throughout the study. The primary outcome was reduction in total CD4 T-cell viral DNA levels. Secondary outcomes included safety, detailed immunological and virological analyses, and time to viral rebound (viral load > 5000 copies/ml) after randomization into an analytical treatment interruption (ATI). RESULTS: A total of 12 individuals completed the treatment phase and nine completed the ATI. Adverse events were limited and consistent with previous reports for MGN1703. Although the dosing regimen led to potent T-cell activation and increased HIV-1-specific T-cell responses, there were no cohort-wide changes in persistent virus (total CD4 T cells viral DNA; P = 0.34). No difference in time to rebound was observed between the ATI arms (log rank P = 0.25). One of nine ATI participants, despite harboring a large replication-competent reservoir, controlled viremia for 150 days via both HIV-1-specific cellular and antibody-mediated immune responses. CONCLUSION: A period of 24 weeks of MGN1703 treatment was safe and improved innate as well as HIV-1-specific adaptive immunity in HIV-1+ individuals. These findings support the incorporation of TLR9 agonism into combination HIV-1 cure strategies. TRIAL NAME AND REGISTRATION: TLR9 Enhancement of antiviral immunity in chronic HIV-1 infection: a phase 1B/2A trial; ClinicalTrials.gov NCT02443935.

4.
Immunology ; 157(2): 163-172, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30919991

RESUMO

It is well understood that the STING signalling pathway is critical for generating a robust innate immune response to pathogens. Human and mouse STING signalling pathways are not identical, however. For example, mice lack IFI16, which has been proven important for the human STING pathway. Therefore, we investigated whether humanized mice are an appropriate experimental platform for exploring the human STING signalling cascade in vivo. We found that NOG mice reconstituted with human cord blood haematopoietic stem cells (humanized NOG mice) exhibit human STING signalling responses to an analogue of the cyclic di-nucleotide cGAMP. There was an increase in the proportions of monocytes in the lungs of mice receiving cGAMP analogue. The most robust levels of STING expression and STING-induced responses were observed in mice exhibiting the highest levels of human chimerization. Notably, differential levels of STING in lung versus spleen following cGAMP analogue treatment suggest that there are tissue-specific kinetics of STING activation and/or degradation in effector versus inductive sites. We also examined the mouse innate immune response to cGAMP analogue treatment. We detected that mouse cells in the immunodeficient NOG mice responded to the cGAMP analogue and they do so with distinct kinetics from the human response. In conclusion, humanized NOG mice represent a valuable experimental model for examining in vivo human STING responses.


Assuntos
Proteínas de Membrana/imunologia , Nucleotídeos Cíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Proteínas Nucleares/imunologia , Fosfoproteínas/imunologia
5.
AIDS ; 33(4): 605-613, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30830886

RESUMO

OBJECTIVE: Histone deacetylase inhibitors (HDACi) have proven to induce HIV-RNA and antigen expression in resting CD4 T cells of antiretroviral therapy (ART)-treated HIV-infected individuals. However, to achieve viral eradication, immune clearance must follow latency reversal, and thus it is essential to understand the impact of latency reversal agents on immune function. DESIGN: Here we evaluate the impact of in-vivo administration of vorinostat (VOR) and panobinostat (PNB) during clinical trials on natural killer (NK) cell function and phenotype. METHODS: Cryopreserved peripheral blood mononuclear cells from HIV-positive participants receiving VOR (NCT01319383) or PNB (NCT01680094) were selected to assess the impact of the drugs on cell composition, activation, NK cell phenotype (CD16, NKG2D, NKp30, NKp46 and DNAM-1), cytotoxic activity (CD107a), and interferon (IFN)-γ production. RESULTS: No impairment of NK cell function was observed during treatment with either VOR or PNB. An increase in the frequency of CD3CD56 NK cells was consistently observed. Interestingly, after VOR administration, NK cells increased expression of NKp46 and CD16, and showed improved degranulation and IFN-γ production capacity. Moreover, taking together VOR and PNB samples, HIV DNA levels in CD4 cells were negatively correlated with NK cell frequency and NK cell expression of CD16. CONCLUSIONS: In-vivo treatment with HDACi does not have measurable negative effects on NK cell function, with some evidence of improved function in vitro. These results have important implications for potential combinatorial approaches to target HIV reservoirs, suggesting that the use of HDACis as a latency reversal agent could be paired with interventions to enhance NK cell activity or recruitment.

6.
J Virol ; 93(8)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30700598

RESUMO

The role of lymphoid tissue as a potential source of HIV-1 rebound following interruption of antiretroviral therapy (ART) is uncertain. To address this issue, we compared the latent viruses obtained from CD4+ T cells in peripheral blood and lymph nodes to viruses emerging during treatment interruption. Latent viruses were characterized by sequencing near-full-length (NFL) proviral DNA and env from viral outgrowth assays (VOAs). Five HIV-1-infected individuals on ART were studied, four of whom participated in a clinical trial of a TLR9 agonist that included an analytical treatment interruption. We found that 98% of intact or replication-competent clonal sequences overlapped between blood and lymph node. In contrast, there was no overlap between 205 latent reservoir and 125 rebound sequences in the four individuals who underwent treatment interruption. However, rebound viruses could be accounted for by recombination. The data suggest that CD4+ T cells carrying latent viruses circulate between blood and lymphoid tissues in individuals on ART and support the idea that recombination may play a role in the emergence of rebound viremia.IMPORTANCE HIV-1 persists as a latent infection in CD4+ T cells that can be found in lymphoid tissues in infected individuals during ART. However, the importance of this tissue reservoir and its contribution to viral rebound upon ART interruption are not clear. In this study, we sought to compare latent HIV-1 from blood and lymph node CD4+ T cells from five HIV-1-infected individuals. Further, we analyzed the contribution of lymph node viruses to viral rebound. We observed that the frequencies of intact proviruses were the same in blood and lymph node. Moreover, expanded clones of T cells bearing identical proviruses were found in blood and lymph node. These latent reservoir sequences did not appear to be the direct origin of rebound virus. Instead, latent proviruses were found to contribute to the rebound compartment by recombination.

7.
AIDS ; 33(3): 425-431, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30531314

RESUMO

OBJECTIVES: Reversing HIV-1 latency has been suggested as a strategy to eradicate HIV-1. We investigated the effect of romidepsin on the HIV transcription profile in participants from the REDUC part B clinical trial. DESIGN: Seventeen participants on suppressive antiretroviral therapy were vaccinated with six doses of the therapeutic vaccine Vacc-4x followed by treatment with three doses of romidepsin. Samples from nine study participants were available for HIV transcription profile analysis. METHODS: Read-through, total (TAR), elongated (longLTR), polyadenylated (polyA) and multiply-spliced (Tat-Rev) HIV transcripts and total HIV DNA were quantified at baseline (visit 1) and 4 h after the second (visit 10b) and third (visit 11b) romidepsin infusions. RESULTS: Read-through, total, elongated, and polyadenylated HIV transcripts increased after romidepsin infusion (P = 0.020, P = 0.0078, P = 0.0039, P = 0.027, respectively), but no changes were observed in multiply-spliced HIV RNA or HIV DNA. No change was observed in the ratio of read-through/total HIV transcripts. The ratio of elongated/total HIV RNA increased after romidepsin (P = 0.016), whereas the ratio of polyadenylated/elongated HIV decreased. Both elongated HIV transcripts and total HIV DNA correlated negatively with the time to viral rebound after interruption of ART. CONCLUSIONS: In these patients, romidepsin increased early events in HIV transcription (initiation and especially elongation), but had less effect on later stages (completion, multiple splicing) that may be required for comprehensive latency reversal and cell killing. Without cell death, increased HIV transcription before or after latency reversal may hasten viral rebound after therapy interruption.

8.
J Control Release ; 294: 298-310, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30552954

RESUMO

Albumin is a highly successful tool of drug delivery providing drastically extended body and blood residence time for the associated cargo, but it only traffics single drug copies at a time. In turn, macromolecular prodrugs (MP) are advantaged in carrying a high drug payload but offering only a modest extension of residence time to the conjugated drugs. In this work, we engineer MP to contain terminal groups that bind to albumin via non-covalent association and reveal that this facile measure affords a significant protraction for the associated polymers. This methodology is applied to MP of acyclovir, a successful drug against herpes simplex virus infection but with poor pharmacokinetics. Resulting albumin-affine MP were efficacious agents against herpes simplex virus type 2 (HSV-2) both in vitro and in vivo. In the latter case, sub-cutaneous administration of MP resulted in local (vaginal) antiviral effects and a systemic protection. Presented benefits of non-covalent association with albumin are readily transferrable to a wide variety of MP in development for drug delivery as anticancer, anti-inflammatory, and anti-viral measures.

9.
Sci Rep ; 8(1): 15253, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323326

RESUMO

Common CCR5-∆32 and HLA alleles only explain a minority of the HIV long-term non-progressor (LTNP) and elite controller (EC) phenotypes. To identify rare genetic variants contributing to the slow disease progression phenotypes, we performed whole exome sequencing (WES) on seven LTNPs and four ECs. HLA and CCR5 allele status, total HIV DNA reservoir size, as well as variant-related functional differences between the ECs, LTNPs, and eleven age- and gender-matched HIV-infected non-controllers on antiretroviral therapy (NCARTs) were investigated. Several rare variants were identified in genes involved in innate immune sensing, CD4-dependent infectivity, HIV trafficking, and HIV transcription mainly within the LTNP group. ECs and LTNPs had a significantly lower HIV reservoir compared to NCARTs. Furthermore, three LTNPs with variants affecting HIV nuclear import showed integrated HIV DNA levels below detection limit after in vitro infection. HIV slow progressors with variants in the TLR and NOD2 pathways showed reduced pro-inflammatory responses compared to matched controls. Low-range plasma levels of fibronectin was observed in a LTNP harboring two FN1 variants. Taken together, this study identified rare variants in LTNPs as well as in one EC, which may contribute to understanding of HIV pathogenesis and these slow progressor phenotypes, especially in individuals without protecting CCR5-∆32 and HLA alleles.

11.
AIDS ; 32(13): 1793-1802, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29762162

RESUMO

OBJECTIVE: Therapeutic HIV-1 immunization followed by latency reversal has been suggested as a strategy to eradicate HIV-1. Here we investigate the phylogenetic composition of the HIV-1 regions targeted by the therapeutic HIV-1 peptide vaccine Vacc-4x in participants in a clinical trial. DESIGN: Seventeen participants on suppressive antiretroviral therapy were vaccinated with six doses of Vacc-4x followed by three doses of romidepsin. Seven study participants were selected for sequencing analysis. All participants underwent an analytical treatment interruption. METHODS: Single-genome/proviral sequencing of the p24-RT region was performed to genetically characterize proviral DNA, cell-associated RNA and outgrowth viruses during therapy as well as plasma HIV-1 RNA during an analytical treatment interruption. RESULTS: There were no changes in cell-associated HIV-1 RNA (P = 0.83) and DNA (P = 0.09) diversity over the course of the study and no difference between cell-associated HIV-1 RNA and DNA diversity (P = 0.32). Only one participant showed signs of potential vaccine-related selection in the rebounding plasma virus. In five of seven participants, we identified human leukocyte antigen-specific cytotoxic T lymphocytes (CTL) epitopes containing nonsilent mutations in 100% of the sequences. CONCLUSION: We detected no evidence of selective immune pressure reflected in proviral diversity or by occurrence of specific mutation in the vaccine-targeted epitopes. Preexisting CTL epitope mutations may affect the potency of this therapeutic vaccine. This highlights the challenges of developing effective HIV-1 therapeutic vaccines.

12.
J Immunol ; 200(10): 3372-3382, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29632140

RESUMO

Among HIV-infected individuals, long-term nonprogressor (LTNP) patients experience slow CD4 T cell decline and almost undetectable viral load for several years after primary acquisition of HIV. Type I IFN has been suggested to play a pathogenic role in HIV pathogenesis, and therefore diminished IFN responses may underlie the LTNP phenotype. In this study, we examined the presence and possible immunological role of multiple homozygous single-nucleotide polymorphisms in the stimulator of IFN genes (STING) encoding gene TMEM173 involved in IFN induction and T cell proliferation in HIV LTNP patients. We identified LTNPs through the Danish HIV Cohort and performed genetic analysis by Sanger sequencing, covering the R71H-G230A-R293Q (HAQ) single-nucleotide polymorphisms in TMEM173 This was followed by investigation of STING mRNA and protein accumulation as well as innate immune responses and proliferation following STING stimulation and infection with replication-competent HIV in human blood-derived cells. We identified G230A-R293Q/G230A-R293Q and HAQ/HAQ homozygous TMEM173 variants in 2 out of 11 LTNP patients. None of the 11 noncontrollers on antiretroviral treatment were homozygous for these variants. We found decreased innate immune responses to DNA and HIV as well as reduced STING-dependent inhibition of CD4 T cell proliferation, particularly in the HAQ/HAQ HIV LTNP patients, compared with the age- and gender-matched noncontrollers on antiretroviral treatment. These findings suggest that homozygous HAQ STING variants contribute to reduced inhibition of CD4 T cell proliferation and a reduced immune response toward DNA and HIV, which might result in reduced levels of constitutive IFN production. Consequently, the HAQ/HAQ TMEM173 genotype may contribute to the slower disease progression characteristic of LTNPs.

13.
J Control Release ; 275: 53-66, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29432822

RESUMO

Macromolecular (pro)drugs hold much promise as broad-spectrum antiviral agents as either microbicides or carriers for intracellular delivery of antiviral drugs. Intriguing opportunity exists in combining the two modes of antiviral activity in the same polymer structure such that the same polymer acts as a microbicide and also serves to deliver the conjugated drug (ribavirin) into the cells. We explore this opportunity in detail and focus on the polymer backbone as a decisive constituent of such formulations. Fourteen polyanions (polycarboxylates, polyphosphates and polyphosphonates, and polysulfonates) were analyzed for blood pro/anti coagulation effects, albumin binding and albumin aggregation, inhibitory activity on polymerases, cytotoxicity, and anti-inflammatory activity in stimulated macrophages. Ribavirin containing monomers were designed to accommodate the synthesis of macromolecular prodrugs with disulfide-exchange triggered drug release. Kinetics of drug release was fast in all cases however enhanced hydrophobicity of the polymer significantly slowed release of ribavirin. Results of this study present a comprehensive view on polyanions as backbone for macromolecular prodrugs of ribavirin as broad-spectrum antiviral agents.

14.
mSphere ; 3(1)2018 Jan-Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29468194

RESUMO

Histone deacetylase inhibitors (HDACi) modulate the transcriptional activity of all cells, including innate and adaptive immune cells. Therefore, we aimed to evaluate immunological effects of treatment with the HDACi panobinostat in HIV-infected patients during a clinical phase IIa latency reversal trial. Using flow cytometry, we investigated changes in T cell activation (CD69, CD38, HLA-DR) and the expression of CD39 and CTLA4 on regulatory T cells (Tregs). Whole-blood stimulations were performed and cytokine responses measured using Luminex. Gene expression in purified peripheral blood mononuclear cells (PBMCs) was evaluated using an Affymetrix HTA 2.0 gene chip. We found that proportions of CD4+ and CD8+ T cells expressing CD69 increased 24 h after initial panobinostat administration (P < 0.01), followed by an increase in the proportions of CD38+ HLA-DR+-coexpressing CD4+ T cells on day 4 (P = 0.02). Concurrently, proportions of Tregs increased by 40% (P = 0.003). Treg CTLA4 median fluorescent intensity (MFI) increased by 25% (P = 0.007), and CD39 MFI on CD39+ Treg increased by 12% (P = 0.02). Lipopolysaccharide (LPS)-induced inflammatory responses (interleukin-1ß [IL-1ß], IL-6, IL-12p40, and tumor necrosis factor alpha [TNF-α]) in whole blood were significantly downregulated 4 days after initial dosing. Lastly, panobinostat induced significant changes in the overall gene expression pattern (fold change, >1.5; false-discovery-rate [FDR]-corrected P, <0.05). Importantly, measures of immune function returned to baseline after panobinostat treatment and follow-up revealed no sustained effect on overall gene expression. IMPORTANCE The effect of treatment with histone deacetylase inhibitors on the immune system in HIV-infected individuals is not clear. Analysis of results from a clinical trial in which 15 HIV-infected individuals received 12 doses of panobinostat identified a significant impact on both T cell activation status and regulatory T cell suppressive marker expression and a reduced level of monocytic responsiveness to inflammatory stimuli. These changes were substantiated by global gene expression analysis. Collectively, the results suggest that panobinostat has multiple effects on innate and adaptive immune responses. Importantly, all the effects were transient, and further panobinostat treatment did not cause persistent long-term changes in gene expression patterns in HIV-infected individuals.

15.
Hum Vaccin Immunother ; 14(6): 1483-1488, 2018 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-29474139

RESUMO

This study investigated the immunomodulatory influence of IL10 producing B regulatory cells, Bregs (CD19+CD24hiCD38hi) to standard Twinrix® vaccination. We also investigated HBsAg specific T-cell mediated IFN-γ responses to Twinrix® which in theory could provide effective immunity despite low anti-HBs titer. A total of 309 hepatitis B negative health care students and workers completed a standard Twinrix® vaccination schedule (0, 1 and 6 months). Depending on the vaccination response the participants were divided in to non-, low- and high responders according to anti-HBs titer (<10, <100 and >1000 mIU/mL respectively) two months after completed vaccination schedule. Blood samples from baseline and after vaccination from all non- and low-responders (23 participants) and the same number of high-responders were used for flow cytometric analyses of IL10 producing Bregs and T-cell mediated IFN-γ responses. A decrease in levels of IL10 producing Bregs was observed after vaccination in high responders compared to non- and low-responders. Compiling non-and low-responders against high-responders showed a lower T-cell mediated IFN-γ response at baseline in non-and low-responders when stimulated with Engerix® vaccine. In contrary no positive correlation between IL10 producing Bregs or IFN-γ positive T-cells and anti-HBs titer was observed. Hence this study cannot prove that levels of IL10 producing Bregs or IFN-γ positive T cell affect HBV vaccine response.

16.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118123

RESUMO

Human immunodeficiency virus (HIV) viremia rebounds rapidly after treatment interruption, and a variety of strategies are being explored to reduce or control viral reactivation posttreatment. This viral rebound arises from reactivation of individual latently infected cells, which spread during ongoing rounds of productive infection. The level of virus produced by the initial individual reactivating cells is not known, although it may have major implications for the ability of different immune interventions to control viral rebound. Here we use data from both HIV and simian immunodeficiency virus (SIV) treatment interruption studies to estimate the initial viral load postinterruption and thereby the initial individual reactivation event. Using a barcoded virus (SIVmac239M) to track reactivation from individual latent cells, we use the observed viral growth rates and frequency of reactivation to model the dynamics of reactivation to estimate that a single reactivated latent cell can produce an average viral load equivalent to ∼0.1 to 0.5 viral RNA (vRNA) copies/ml. Modeling of treatment interruption in HIV suggests an initial viral load equivalent of ∼0.6 to 1 vRNA copies/ml. These low viral loads immediately following latent cell reactivation provide a window of opportunity for viral control by host immunity, before further replication allows viral spread. This work shows the initial levels of viral production that must be controlled in order to successfully suppress HIV reactivation following treatment interruption.IMPORTANCE Current treatment for HIV is able to suppress viral replication and prevent disease progression. However, treatment cannot eradicate infection, because the virus lies silent within latently infected cells. If treatment is stopped, the virus usually rebounds above the level of detection within a few weeks. There are a number of approaches being tested aimed at either eradicating latently infected cells or controlling the virus if it returns. Studying both the small pool of latently infected cells and the early events during viral reactivation is difficult, because these involve very small levels of virus that are difficult to measure directly. Here, we combine experimental data and mathematical modeling to understand the very early events during viral reactivation from latency in both HIV infection of humans and SIV infection of monkeys. We find that the initial levels of virus are low, which may help in designing therapies to control early viral reactivation.


Assuntos
Infecções por HIV/virologia , HIV/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral , Ativação Viral , Latência Viral , Algoritmos , Animais , Terapia Antirretroviral de Alta Atividade , Infecções por HIV/tratamento farmacológico , Humanos , Modelos Biológicos , Fatores de Tempo
17.
Hum Vaccin Immunother ; 14(4): 909-916, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29172992

RESUMO

Human papillomavirus (HPV) infection is a frequent cause of malignant and non-malignant disease, in particular among persons with HIV. HPV serotype-specific anti L1 antibodies protect against HPV infection but little is known about prophylactic HPV vaccine-induced cell-mediated immunity against HPV in high-risk individuals. We recently showed that both HPV vaccines (Gardasil® and Cervarix®) induce solid, serological immune responses in HIV-infected persons. This study aimed to characterize HPV-specific CD4 T cells in HIV-infected HPV-vaccine recipients, T cell responses being critical for B cell activation and antibody-isotype switching. Thirty HIV-infected patients on long-term antiretroviral treatment (ART) received 3 doses of either Cervarix (n = 15) or Gardasil (n = 15) vaccine at month 0, 1.5 and 6. Cryopreserved peripheral blood mononuclear cells (PBMC) from baseline, 7 and 12 months were subjected to 24-hour stimulation with specific pools of HPV L1-peptides (HPV6, 11, 16, 18, 31 and 45) and HPV E6/E7-peptide pools (HPV6/11 and HPV16/18). Fluorescence-activated cell sorting with intracellular staining (IC-FACS) against CD4, CD154, IL-2, and IFNγ was performed. Frequencies (%) of HPV-antigen specific CD4+ T cells (CD154+/IL-2+ or CD154+/ IFNγ+) were determined. Both HPV-vaccines significantly and comparably enhanced cell-mediated vaccine L1 antigen-specific immunity in HIV-positive adults receiving ART therapy at month 7 and 12 after first vaccine dose. This suggests that the vaccines induce CD4 T cellular memory despite HIV-induced immune compromisation.

18.
Adv Healthc Mater ; 6(23)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28945945

RESUMO

Viral pathogens continue to constitute a heavy burden on healthcare and socioeconomic systems. Efforts to create antiviral drugs repeatedly lag behind the advent of pathogens and growing understanding is that broad-spectrum antiviral agents will make strongest impact in future antiviral efforts. This work performs selection of synthetic polymers as novel broadly active agents and demonstrates activity of these polymers against Zika, Ebola, Lassa, Lyssa, Rabies, Marburg, Ebola, influenza, herpes simplex, and human immunodeficiency viruses. Results presented herein offer structure-activity relationships for these pathogens in terms of their susceptibility to inhibition by polymers, and for polymers in terms of their anionic charge and hydrophobicity that make up broad-spectrum antiviral agents. The identified leads cannot be predicted based on prior data on polymer-based antivirals and represent promising candidates for further development as preventive microbicides.


Assuntos
Antivirais , Ebolavirus/metabolismo , Polímeros , Vírus da SARS/metabolismo , Viroses/tratamento farmacológico , Zika virus/metabolismo , Animais , Antivirais/química , Antivirais/farmacologia , Cercopithecus aethiops , Células HEK293 , Humanos , Polímeros/química , Polímeros/farmacologia , Células Vero , Viroses/metabolismo , Viroses/patologia
19.
JCI Insight ; 2(16)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28814661

RESUMO

Promising therapeutic approaches for eradicating HIV include transcriptional activation of provirus from latently infected cells using latency-reversing agents (LRAs) and immune-mediated clearance to purge reservoirs. Accurate detection of cells capable of producing viral antigens and virions, and the measurement of clearance of infected cells, is essential to assessing therapeutic efficacy. Here, we apply enhanced methodology extending the sensitivity limits for the rapid detection of subfemtomolar HIV gag p24 capsid protein in CD4+ T cells from ART-suppressed HIV+ individuals, and we show viral protein induction following treatment with LRAs. Importantly, we demonstrate that clinical administration of histone deacetylase inhibitors (HDACis; vorinostat and panobinostat) induced HIV gag p24, and ex vivo stimulation produced sufficient viral antigen to elicit immune-mediated cell killing using anti-gp120/CD3 bispecific antibody. These findings extend beyond classical nucleic acid endpoints, which are confounded by the predominance of mutated, defective proviruses and, of paramount importance, enable assessment of cells making HIV protein that can now be targeted by immunological approaches.

20.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539449

RESUMO

There is growing interest in utilizing antibody-dependent cellular cytotoxicity (ADCC) to eliminate infected cells following reactivation from HIV-1 latency. A potential barrier is that HIV-1-specific ADCC antibodies decline in patients on long-term antiretroviral therapy (ART) and may not be sufficient to eliminate reactivated latently infected cells. It is not known whether reactivation from latency with latency-reversing agents (LRAs) could provide sufficient antigenic stimulus to boost HIV-1-specific ADCC. We found that treatment with the LRA panobinostat or a short analytical treatment interruption (ATI), 21 to 59 days, was not sufficient to stimulate an increase in ADCC-competent antibodies, despite viral rebound in all subjects who underwent the short ATI. In contrast, a longer ATI, 2 to 12 months, among subjects enrolled in the Strategies for Management of Antiretroviral Therapy (SMART) trial robustly boosted HIV-1 gp120-specific Fc receptor-binding antibodies and ADCC against HIV-1-infected cells in vitro These results show that there is a lag between viral recrudescence and the boosting of ADCC antibodies, which has implications for strategies toward eliminating latently infected cells.IMPORTANCE The "shock and kill" HIV-1 cure strategy aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. Several latency reversing agents (LRAs) have been examined in vivo, but LRAs alone have not been able to achieve HIV-1 remission and prevent viral rebound following analytical treatment interruption (ATI). In this study, we examined whether LRA treatment or ATI can provide sufficient antigenic stimulus to boost HIV-1-specific functional antibodies that can eliminate HIV-1-infected cells. Our study has implications for the antigenic stimulus required for antilatency strategies and/or therapeutic vaccines to boost functional antibodies and assist in eliminating the latent reservoir.


Assuntos
Imunidade Adaptativa , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Adulto , Antirretrovirais/administração & dosagem , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Indóis/administração & dosagem , Masculino , Pessoa de Meia-Idade , Panobinostat , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA