Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Cardiol ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624275

RESUMO

Despite advances in our understanding of the pathophysiology of many cardiovascular diseases (CVDs) and expansion of available therapies, the global burden of CVD-associated morbidity and mortality remains unacceptably high. Important gaps remain in our understanding of the mechanisms of CVD and determinants of disease progression. In the past decade, much research has been conducted on the human microbiome and its potential role in modulating CVD. With the advent of high-throughput technologies and multiomics analyses, the complex and dynamic relationship between the microbiota, their 'theatre of activity' and the host is gradually being elucidated. The relationship between the gut microbiome and CVD is well established. Much less is known about the role of disruption (dysbiosis) of the oral microbiome; however, interest in the field is growing, as is the body of literature from basic science and animal and human investigations. In this Review, we examine the link between the oral microbiome and CVD, specifically coronary artery disease, stroke, peripheral artery disease, heart failure, infective endocarditis and rheumatic heart disease. We discuss the various mechanisms by which oral dysbiosis contributes to CVD pathogenesis and potential strategies for prevention and treatment.

2.
Nano Lett ; 23(1): 170-176, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562744

RESUMO

Electron doping of graphene has been extensively studied on graphene-supported surfaces, where the metallicity is influenced by the substrate. Herewith we propose potassium adsorption on free-standing nanoporous graphene, thus eluding any effect due to the substrate. We monitor the electron migration in the π* downward-shifted conduction band. In this rigid band shift, we correlate the spectral density of the π* state in the upper Dirac cone with the associated plasmon, blue-shifted with increasing K dose, as deduced by electron energy loss spectroscopy. These results are confirmed by the Dirac plasmon activated by the C 1s emitted electrons, thanks to spatially resolved photoemission. This crosscheck constitutes a reference on the correlation between the electronic π* states in the conduction band and the Dirac plasmon evolution upon in situ electron doping of fully free-standing graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...