Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(12): 12LT01, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31778977

RESUMO

Topological semimetal (TSM) AuTe2Br thin flakes have been studied by Raman spectroscopy and magneto-transport measurement. The angle-resolved polarized Raman spectrum of AuTe2Br (bulk and thin flake) shows strong anisotropy. Together with high resolution transmission electron microscopy (TEM), we establish a non-destructive method to determine the crystallographic orientation of AuTe2Br flakes. At high temperature (T > 50 K), the magneto-resistance (MR) of AuTe2Br thin flakes shows typical parabolic-like behavior, which can be well fitted by the two-fluid model. However, at low temperature (T ⩽ 30 K), the MR of thin flakes (<17 nm) clearly deviates from the two-fluid model as well as from the Kohler's rule, suggesting a new type of scattering emerging below 30 K. Several possible scattering mechanisms are discussed and the respective corrections to MR are compared with our experimental data. In addition, the conductivity of these metallic crystals is also found to be highly anisotropic, with the hole mobility along the a axis about five times higher than that along the c axis.

2.
Small ; 15(13): e1805344, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30821911

RESUMO

Graphyne (GY) is a new type of carbon allotrope, which is viewed as a rapidly rising star in the carbon family referred to as 2D carbon allotropes due to its extraordinary properties. Considering the dynamic nature of the alkyne metathesis reaction, a hydrogen-substituted graphyne (HsGY) film is successfully synthesized on a gas/liquid interface using 1,3,5-tripynylbenzene (TPB) as the precursor. The synthesized HsGY film is used as a sulfur host matrix to be applied in lithium-sulfur batteries (LSBs). The HsGY@S electrode is prepared using S8 as sulfur source and presents excellent electrochemical performance.

3.
Nano Lett ; 19(2): 1124-1130, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30676030

RESUMO

Understanding the charge interaction between molecules and two-dimensional (2D) materials is essential for the design of functional devices. Here, we report the bifacial Raman enhancement of molecules on monolayer graphene and hexagonal boron nitride ( h-BN). Taking advantage of the atomically thick layered structure, we show that both surfaces of 2D materials can interact with molecules and simultaneously enhance their Raman scattering. Different enhancement features were observed for monolayer graphene and h-BN. The intensity decrease of particular Raman modes of copper phthalocyanine (CuPc) on both surfaces of h-BN suggests that z-dipoles exist and are partially canceled out between the two interfaces, while the twice Raman intensities of the characteristic Raman modes of CuPc on both surfaces of graphene compared to that on one surface evidenced the charge transfer process. These results provide an approach to modify 2D materials by bifacial adsorption of molecules, and the findings can inspire the design of functional 2D material-based devices.

4.
ACS Appl Mater Interfaces ; 11(3): 2632-2637, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29620348

RESUMO

Graphdiyne is predicted to have a natural band gap and simultaneously possesses superior carrier mobility, which makes it potential for electronic devices. Synthesis of ultrathin graphdiyne film is highly demanded. In this work, we proposed an approach for synthesis of ultrathin graphdiyne film using graphene as a surface template, which can induce confined reaction on substrate. With all-carbon, conjugated, atomically flat structure, graphene has a strong interaction with the graphdiyne system, resulting the formation of continuous flat ultrathin graphdiyne film with thickness less than 3 nm. Raman spectra, grazing incidence X-ray diffraction, and transmission electron microscopy characterization all confirmed the features of graphdiyne. Furthermore, this strategy was also extended to the hexagonal boron nitride (hBN) surface with resembling structure, serving as a perfect dielectric layer. Field-effect transistor devices based on graphdiyne film grown on hBN were fabricated directly, and electrical transport measurements demonstrate the good conductivity with p-type characteristics of the as-obtained graphdiyne film.

5.
ACS Appl Mater Interfaces ; 11(3): 2734-2739, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29600713

RESUMO

ß-Graphdiyne (ß-GDY) is a two-dimensional carbon material with zero band gap and highly intrinsic carrier mobility and a promising material with potential applications in electronic devices. However, the synthesis of continuous single or ultrathin ß-GDY has not been realized yet. Here, we proposed an approach for ultrathin ß-GDY-like film synthesis using graphene as a template because of the strong π-π interaction between ß-GDY and graphene. The as-synthesized film presents smooth and continuous morphology and has good crystallinity. Electrical measurement reveals that the film presented a conductivity of 1.30 × 10-2 S·m-1 by fabricating electronic devices on ß-GDY grown on a dielectric hexagonal boron nitride template.

6.
J Am Chem Soc ; 140(38): 11935-11941, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30175921

RESUMO

We study the roles of graphene acting as a buffer layer for growth of an AlN film on a sapphire substrate. Graphene can reduce the density of AlN nuclei but increase the growth rate for an individual nucleus at the initial growth stage. This can lead to the reduction of threading dislocations evolved at the coalescence boundaries. The graphene interlayer also weakens the interaction between AlN and sapphire and accommodates their large mismatch in the lattice and thermal expansion coefficients; thus, the compressive strain in AlN and the tensile strain in sapphire are largely relaxed. The effective relaxation of strain further leads to a low density of defects in the AlN films. These findings reveal the roles of graphene in III-nitride growth and offer valuable insights into the efficient applications of graphene in the light-emitting diode industry.

7.
Sci Adv ; 4(7): eaat6378, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29984309

RESUMO

Graphdiyne (GDY) is an ordered two-dimensional (2D) carbon allotrope comprising sp- and sp2-hybridized carbon atoms with high degrees of π-conjugation, which features a natural band gap and superior electric properties. However, the synthesis of one- or few-layer GDY remains challenging because of the free rotation around alkyne-aryl single bonds and the lack of thickness control. We report the facile synthesis of an ultrathin single-crystalline GDY film on graphene through a solution-phase van der Waals epitaxial strategy. The weak admolecule-substrate interaction at the heterojunction drastically relaxes the large lattice mismatch between GDY and graphene. It allows the fast in-plane coupling of admolecules and slow out-of-plane growth toward the formation of an incommensurately stacked heterostructure, which is composed of single-layer graphene and few-layer ABC-stacked GDY, as directly observed by electron microscopy and identified from Raman fingerprints. This study provides a general route not only to the bottom-up synthesis of intriguing 2D acetylenic carbon allotropes but also to the device fabrication for the direct measurement of their intrinsic electrical, mechanical, and thermal properties.

8.
Small ; 14(22): e1800725, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29717818

RESUMO

Corrugation is a ubiquitous phenomenon for graphene grown on metal substrates by chemical vapor deposition, which greatly affects the electrical, mechanical, and chemical properties. Recent years have witnessed great progress in controlled growth of large graphene single crystals; however, the issue of surface roughness is far from being addressed. Here, the corrugation at the interface of copper (Cu) and graphene, including Cu step bunches (CuSB) and graphene wrinkles, are investigated and ascribed to the anisotropic strain relaxation. It is found that the corrugation is strongly dependent on Cu crystallographic orientations, specifically, the packed density and anisotropic atomic configuration. Dense Cu step bunches are prone to form on loose packed faces due to the instability of surface dynamics. On an anisotropic Cu crystal surface, Cu step bunches and graphene wrinkles are formed in two perpendicular directions to release the anisotropic interfacial stress, as revealed by morphology imaging and vibrational analysis. Cu(111) is a suitable crystal face for growth of ultraflat graphene with roughness as low as 0.20 nm. It is believed the findings will contribute to clarifying the interplay between graphene and Cu crystal faces, and reducing surface roughness of graphene by engineering the crystallographic orientation of Cu substrates.

9.
Adv Mater ; 30(25): e1706402, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29736942

RESUMO

The layered ternary compound TaIrTe4 is an important candidate to host the recently predicted type-II Weyl fermions. However, a direct and definitive proof of the absence of inversion symmetry in this material, a prerequisite for the existence of Weyl Fermions, has so far remained evasive. Herein, an unambiguous identification of the broken inversion symmetry in TaIrTe4 is established using angle-resolved polarized Raman spectroscopy. Combining with high-resolution transmission electron microscopy, an efficient and nondestructive recipe to determine the exact crystallographic orientation of TaIrTe4 crystals is demonstrated. Such technique could be extended to the fast identification and characterization of other type-II Weyl fermions candidates. A surprisingly strong in-plane electrical anisotropy in TaIrTe4 thin flakes is also revealed, up to 200% at 10 K, which is the strongest known electrical anisotropy for materials with comparable carrier density, notably in such good metals as copper and silver.

10.
Chem Soc Rev ; 47(9): 3217-3240, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29564430

RESUMO

Two-dimensional (2D) layered materials have attracted tremendous attention and led to a prosperous development in both fundamental investigation and device applications in various fields, such as nanoelectronics, flexible devices, sustainable energy and catalysts. The precise characterization of the structure and properties of 2D materials is in urgent need. Raman scattering spectroscopy is one of the most popular characterization tools that is convenient, rapid and non-invasive. It provides information on both the lattice structure from the frequency of phonon modes and the electronic band structure through the intensity due to electronic resonance Raman scattering. Although a few morphological characterization tools can image 2D materials with atomic resolution, Raman scattering measurements are more tolerant to the conditions of sample preparation such as the substrate and less technically demanding, and have been one of the routine tools for the characterization of 2D materials. In this review, we focus on the characterization of 2D materials using Raman scattering spectroscopy, in particular, the revealing of differences from primitive 2D materials, such as defects, doping effects, van der Waals heterostructures and the interaction with molecules. The characteristic Raman features of such differences and the corresponding interpretation will be discussed. We hope that this review will be useful for wide research communities of materials, physics, chemistry and engineering.

11.
Adv Sci (Weinh) ; 4(12): 1700472, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29270354

RESUMO

Semiconducting single-walled carbon nanotubes (s-SWNTs) are regarded as an important candidate for infrared (IR) optical detection due to their excellent intrinsic properties. However, the strong binding energy of excitons in s-SWNTs seriously impedes the development of s-SWNTs IR photodetector. This Communication reports an IR photodetector with highly pure s-SWNTs and γ-graphdiyne. The heterojunctions between the two materials can efficiently separate the photogenerated excitons. In comparison to device fabricated only with s-SWNTs, this IR detector shows a uniform response in the whole channel of the device. The response time is demonstrated to be below 1 ms. The optimal responsivity and detectivity approximately reach 0.4 mA W-1 and 5 × 106 cmHz1/2 W-1, respectively.

12.
Nano Lett ; 17(11): 6766-6772, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28991488

RESUMO

Architectural windows are a major cause of thermal discomfort as the inner glazing during cold days can be several degrees colder than the indoor air. Mitigating this, the indoor temperature has to be increased, leading to unavoidable thermal losses. Here we present solar thermal surfaces based on complex nanoplasmonic antennas that can raise the temperature of window glazing by up to 8 K upon solar irradiation while transmitting light with a color rendering index of 98.76. The nanoantennas are directional, can be tuned to absorb in different spectral ranges, and possess a structural integrity that is not substrate-dependent, and thus they open up for application on a broad range of surfaces.

13.
ACS Nano ; 11(10): 10366-10372, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28992402

RESUMO

The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS2) and show a large circular intensity differential (CID) of Raman scattering in ReS2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.

14.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585311

RESUMO

Controllable synthesis of carbon nanotubes (CNTs) is of great importance in its further application, which attracts broad attention. As growth and etching are the two sides in the process of material crystallography and the control of the competition between them forms the foundation for modern technology of materials design and manufacture, the understanding on etching process of carbon nanotubes is still very unclear because technically it is of great challenge to characterize the dynamics in such small one-dimensional (1D) scale. Here the real-time investigation on the etching process of CNTs is reported, by the hot-wall chemical reactor equipped with a polarized optical microscope. It is discovered that the CNT etching behavior in air is totally of random, including the etching sites, termination sites, and structure dependence. Combining with the dynamic simulation, it is revealed that the random behavior reflects the unique "self-termination" phenomenon. A structure-independent etching propagation barrier of 2.4 eV is also obtained, which indicates that the etching propagation process still follows the conventional Kinetic Wulff construction theory. The results represent the new knowledge on the etching process in carbon nanotube and can contribute to its selective enrichment. Furthermore, the "self-termination" phenomenon may be a universal behavior in 1D process.

15.
Small ; 13(30)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28599097

RESUMO

Identification of the crystalline axis of anisotropic black phosphorus (BP) is important for investigating its physical properties, as well as for optical and electronic applications. Herein, it is showed that by applying in-plane uniaxial strain and measuring the changes of the Raman shifts, the crystalline axis of BP can be reliably determined. The strain effects on the Raman shifts are angle-dependent, and they can be expressed as a combination of the Raman responses under zigzag and armchair strain. Differing from previous polarized optical spectroscopic methods where the Raman intensity is analyzed, the proposed method uses the Raman frequency shift, which is less affected by laser polarization, excitation wavelength, the sample thickness, and the substrate. The effective strain applied on BP from the stretched substrate is estimated, and the results show that only 20 to 40% of the strain can be effectively transferred to BP flakes from a polyethylene terephthalate substrate. Our method provides not only an effective and robust approach to identify the crystalline orientation of layered BP, but it is also a model to extract additional information in strain-related studies. It can also be extended to other 2D anisotropic materials.

16.
Adv Mater ; 29(19)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28295780

RESUMO

ß-Graphdiyne (ß-GDY) is a member of 2D graphyne family with zero band gap, and is a promising material with potential applications in energy storage, organic electronics, etc. However, the synthesis of ß-GDY has not been realized yet, and the measurement of its intrinsic properties remains elusive. In this work, ß-GDY-containing thin film is successfully synthesized on copper foil using modified Glaser-Hay coupling reaction with tetraethynylethene as precursor. The as-grown carbon film has a smooth surface and is continuous and uniform. Electrical measurements reveal the conductivity of 3.47 × 10-6 S m-1 and the work function of 5.22 eV. TiO2 @ß-GDY nanocomposite is then prepared and presented with an enhancement of photocatalytic ability compared to pure TiO2 .

17.
Nature ; 543(7644): 234-238, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28199307

RESUMO

The semiconductor industry is increasingly of the view that Moore's law-which predicts the biennial doubling of the number of transistors per microprocessor chip-is nearing its end. Consequently, the pursuit of alternative semiconducting materials for nanoelectronic devices, including single-walled carbon nanotubes (SWNTs), continues. Arrays of horizontal nanotubes are particularly appealing for technological applications because they optimize current output. However, the direct growth of horizontal SWNT arrays with controlled chirality, that would enable the arrays to be adapted for a wider range of applications and ensure the uniformity of the fabricated devices, has not yet been achieved. Here we show that horizontal SWNT arrays with predicted chirality can be grown from the surfaces of solid carbide catalysts by controlling the symmetries of the active catalyst surface. We obtained horizontally aligned metallic SWNT arrays with an average density of more than 20 tubes per micrometre in which 90 per cent of the tubes had chiral indices of (12, 6), and semiconducting SWNT arrays with an average density of more than 10 tubes per micrometre in which 80 per cent of the nanotubes had chiral indices of (8, 4). The nanotubes were grown using uniform size Mo2C and WC solid catalysts. Thermodynamically, the SWNT was selectively nucleated by matching its structural symmetry and diameter with those of the catalyst. We grew nanotubes with chiral indices of (2m, m) (where m is a positive integer), the yield of which could be increased by raising the concentration of carbon to maximize the kinetic growth rate in the chemical vapour deposition process. Compared to previously reported methods, such as cloning, seeding and specific-structure-matching growth, our strategy of controlling the thermodynamics and kinetics offers more degrees of freedom, enabling the chirality of as-grown SWNTs in an array to be tuned, and can also be used to predict the growth conditions required to achieve the desired chiralities.

18.
Nanoscale ; 8(46): 19195-19199, 2016 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-27830859

RESUMO

Herein, we report the optical trapping and directional transport of nanoparticles in an aqueous solution by plasmonic nanowires. A laser illuminated one end of a silver nanowire and excited the localized and propagating surface plasmons. Optical forces were induced by the surface plasmons, which could trap the nanoparticles in an aqueous solution. Interestingly, the trapped nanoparticles moved along the silver nanowires from the trapping site to the excitation spot of the laser. Such movements of nanoparticles were also observed on curved nanowires, in which the trajectories of the particles were explicitly determined by the shape of the nanowires. More importantly, for a V-shaped silver nanowire, the direction of the movement could be modulated by the polarization of the incident laser. The direction of the movement was opposite to the prediction by the scattering force due to the propagation of surface plasmons, and the driving force could involve the thermal convection of local fluid due to a heating effect. Our findings indicate a novel approach to transport nanoparticles by plasmonic waveguides in aqueous solution.

19.
Small ; 12(19): 2627-33, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27030911

RESUMO

The incident and scattered light engaged in the Raman scattering process of low symmetry crystals always suffer from the birefringence-induced depolarization. Therefore, for anisotropic crystals, the classical Raman selection rules should be corrected by taking the birefringence effect into consideration. The appearance of the 2D anisotropic materials provides an excellent platform to explore the birefringence-directed Raman selection rules, due to its controllable thickness at the nanoscale that greatly simplifies the situation comparing with bulk materials. Herein, a theoretical and experimental investigation on the birefringence-directed Raman selection rules in the anisotropic black phosphorus (BP) crystals is presented. The abnormal angle-dependent polarized Raman scattering of the Ag modes in thin BP crystal, which deviates from the normal Raman selection rules, is successfully interpreted by the theoretical model based on birefringence. It is further confirmed by the examination of different Raman modes using different laser lines and BP samples of different thicknesses.

20.
J Am Chem Soc ; 138(1): 300-5, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26669826

RESUMO

The striking in-plane anisotropy remains one of the most intriguing properties for the newly rediscovered black phosphorus (BP) 2D crystals. However, because of its rather low-energy band gap, the optical anisotropy of few-layer BP has been primarily investigated in the near-infrared (NIR) regime. Moreover, the essential physics that determine the intrinsic anisotropic optical property of few-layer BP, which is of great importance for practical applications in optical and optoelectronic devices, are still in the fancy of theory. Herein, we report the direct observation of the optical anisotropy of few-layer BP in the visible regime simply by using polarized optical microscopy. On the basis of the Fresnel equation, the intrinsic anisotropic complex refractive indices (n-iκ) in the visible regime (480-650 nm) were experimentally obtained for the first time using the anisotropic optical contrast spectra. Our findings not only provide a convenient approach to measure the optical constants of 2D layered materials but also suggest a possibility to design novel BP-based photonic devices such as atom-thick light modulators, including linear polarizer, phase plate, and optical compensator in a broad spectral range extending to the visible window.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA