Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-34491359

RESUMO

INTRODUCTION: Pituitary growth hormone (GH)-secreting adenomas (GH-PAs) cause mass effects and dysregulated hypersecretion of GH. However, somatic mutation burden is low in PAs. While progress has been made in identifying the epigenetic changes involved in GH-PA initiation, the precise details of its tumorigenesis in GH-PA patients remains to be elucidated. As N 6-methyladenosine (m 6A) has been shown to often play a critical role in various tumors, it represents a possible initiation point for the tumorigenesis of pituitary adenomas. However, the role of RNA methylation in GH adenomas remains unclear. METHODS: Protein expression of m 6A regulators was measured by immunohistochemistry. Global levels and distribution of m 6A methylation were separately analyzed by m 6A ELISA and m 6A-seq. RNA interference and lentivirus knockdown system were used to investigate the role of methyltransferase METTL3 and its m 6A dependent regulatory mechanism in tumor progression and GH secretion. RESULTS: We show that both METTL3 mRNA and protein expression are elevated in GH-PA samples when compared with both normal pituitary tissue specimens and nonsecreting pituitary adenomas. Levels of m 6A modification increased in GH-PAs, and hypermethylated RNAs are involved in hormone secretion and cell development. Knockdown of METTL3 in GH3 cell line resulted in decreased cell growth and GH secretion. Importantly, we found that GNAS and GADD45γ act as the downstream targets in this process. CONCLUSION: Our findings strongly suggest that m 6A methyltransferase METTL3 promotes tumor growth and hormone secretion by increasing expression of GNAS and GADD45γ in a m 6A-dependent manner. Thus, METTL3 and the methylated RNAs constitute suitable targets for clinical treatment of GH-PAs.

3.
J Phys Chem Lett ; : 8740-8748, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34478306

RESUMO

Herein, the structure-electrochemistry relationship of O2-Li5/6(Li0.2Ni0.2Mn0.6)O2 is deliberately studied by local-structure probes including site-sensitive 7Li pj-MATPASS NMR, quantitative 6Li magic-angle spinning NMR, and electron paramagnetic resonance (EPR). The extraction and reinsertion of LiTM (Li in the transition metal layer) during the first cycle are only partially reversible, bringing about the formation of tetrahedral LiLi (Li in the Li layer) that can be reversibly (de)intercalated after the activation cycle. The high-voltage oxygen redox process is preserved beyond the first cycle, further manifesting the structural superiority of O2 stacking over O3 stacking in bolstering oxygen redox. Moreover, the (de)lithiation process is highly reversible without pronounced structural hysteresis after the rearrangement of Li and transition metal upon the activation cycle, which can explain well the variation of voltage hysteresis from the first cycle to second cycle. These insights elucidate the imperfect structural stability of O2-type Li-rich layered oxides, which could be further improved by streamlining the returning path of LiTM.

4.
Signal Transduct Target Ther ; 6(1): 337, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489403

RESUMO

SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.


Assuntos
Membrana Basal/metabolismo , Barreira Hematoencefálica/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Junções Íntimas/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Membrana Basal/patologia , Membrana Basal/virologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , COVID-19/genética , COVID-19/patologia , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , Junções Íntimas/genética , Junções Íntimas/patologia , Junções Íntimas/virologia , Células Vero
5.
Artigo em Inglês | MEDLINE | ID: mdl-34347420

RESUMO

Disordered rocksalt (DRX) cathodes have attracted interest due to their high capacity and compositional flexibility (e.g., Co-free chemistries). However, the sloping voltage profile and gradual capacity fade during cycling have hindered the widespread adoption of these materials. Simulations predict that fluorine substitution in DRX cathodes will improve their capacity, rate performance, and cyclability. In this study, we use a fluidized bed reactor to fluorinate a model Li-rich DRX composition (Li1.15Ni0.375Ti0.375Mo0.1O2, NTMO) to investigate how fluorine content impacts the cathode's structure and electrochemical performance. Instead of substituting O with F to form oxyfluoride phases, direct fluorination of DRX cathodes leads to the formation of LiF surface films, which improves the specific energy and capacity retention. This study demonstrates the feasibility of direct fluorination to improve the electrochemical performance of high-voltage cathodes by tuning the material's surface chemistry.

6.
ACS Nano ; 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34347434

RESUMO

The reversibility of the redox processes plays a crucial role in the electrochemical performance of lithium-excess cation-disordered rocksalt (DRX) cathodes. Here, we report a comprehensive analysis of the redox reactions in a representative Ni-based DRX cathode. The aim of this work is to elucidate the roles of multiple cations and anions in the charge compensation mechanism that is ultimately linked to the electrochemical performance of Ni-based DRX cathode. The low-voltage reduction reaction results in the low energy efficiency and strong voltage hysteresis. Our data reveal that the Mo migration between octahedral and tetrahedral sites enhances the O reduction potential, thus offering a potential strategy to improve energy efficiency. This work highlights the important role that the high-valence transition metal plays in the redox chemistry and provides useful insights into the potential pathway to further address the challenges in Ni-based DRX systems.

7.
Eur J Pharmacol ; 908: 174317, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34270989

RESUMO

Endothelial cell dysfunction is a prominent feature of diabetic cardiovascular complications, and endothelial cell senescence is considered to be an important contributor to endothelial dysfunction. Discoidin domain receptor 1 (DDR1) has been reported to be involved in atherogenesis and cerebral ischemia/reperfusion injury. In this study, we aimed to explore the role of DDR1 in endothelial cell senescence under diabetic conditions and elucidate the underlying mechanisms. A diabetic rat model was established by a single intraperitoneal injection of streptozocin (STZ) (60 mg/kg), which showed an increase in senescence-associated ß-galactosidase (SA-ß-gal) staining signal of thoracic aortic endothelium, impaired vascular structure and function, accompanied by an up-regulation of DDR1. Next, we verified the role of DDR1 in endothelial senescence and the underlying mechanisms in high glucose-treated human umbilical vein endothelial cells (HUVECs). Consistent with the in vivo findings, high glucose induced endothelial senescence, impaired endothelial function and elevated DDR1 expression, accompanied by the elevation of senescence-related genes p53 and p21 expression, and these effects were reversed by DDR1 siRNA. DDR1 has been documented to be a potential target of miR-199a-3p. Here, we found that miR-199a-3p was down-regulated by high glucose in the aorta tissue and HUVECs, while miR-199a-3p mimic significantly suppressed increased endothelial senescence and elevated DDR1 induced by high glucose. In conclusion, our data demonstrated that miR-199a-3p/DDR1/p53/p21 signaling pathway was involved in endothelial senescence under diabetic conditions, and therapeutic targeting DDR1 would be exploited to inhibit endothelial senescence owing to high glucose exposure.

8.
Chem Commun (Camb) ; 57(60): 7362-7365, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34196343

RESUMO

A facile strategy was introduced for room-temperature controllable synthesis of hierarchically flower-like hollow COFs (FHF-COFs). Furthermore, the universality for synthesis of the HFH-COFs was validated by altering the building units. Inspired by the unique morphology, extremely large surface area and good chemical stability, HFH-COFs could serve as an attractive adsorption probe by loading with gold nanoparticles and be applied to enrichment of brain natriuretic peptide from human serum. This work opens up a whole new approach for controllable synthesis of the HFH-COFs at room temperature and expands the application of COFs as a promising enrichment probe for complex biological samples.


Assuntos
Estruturas Metalorgânicas/química , Peptídeo Natriurético Encefálico/isolamento & purificação , Adsorção , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/síntese química , Peptídeo Natriurético Encefálico/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Artigo em Inglês | MEDLINE | ID: mdl-34205744

RESUMO

The prevalence of gestational diabetes mellitus (GDM) is increasing, and only a few mobile health (mHealth) applications are specifically designed to manage GDM. In this mixed-methods study, a follow-up study of a randomized controlled trial (RCT) analyzed a largely automated mHealth application-based lifestyle coaching program to (a) measure the application's usage behavior and (b) explore users' perceptions of its usefulness in GDM management. Quantitative data were collected from the 170 application users who had participated in the intervention arm of the RCT. Semi-structured interviews (n = 14) captured users' experiences when using the application. Data were collected from June 2019 to January 2020. Quantitative data were analyzed descriptively, and interviews were analyzed thematically. Only 57/170 users (34%) logged at least one meal, and only 35 meals on average were logged for eight weeks because of the incorrectly worded food items and limited food database. On the contrary, an average of 1.85 (SD = 1.60) weight values were logged per week since the weight tracking component was easy to use. Many users (6/14 (43%)) mentioned that the automatic coach messages created an immediate sense of self-awareness in food choices and motivated behavior. The findings suggest that for GDM management, a largely automated mHealth application has the potential to promote self-awareness of healthy lifestyle choices, reducing the need for intensive human resources. Additionally, several gaps in the application's design were identified which need to be addressed in future works.


Assuntos
Diabetes Gestacional , Aplicativos Móveis , Telemedicina , Diabetes Gestacional/terapia , Feminino , Estilo de Vida Saudável , Humanos , Estilo de Vida , Gravidez
10.
Chem Commun (Camb) ; 57(61): 7501-7504, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34259250

RESUMO

Micron-sized spherical covalent organic frameworks (SCOFs) with tunable sizes, narrow size distribution, and significant mono-dispersity were simply synthesized at room temperature. Thanks to their high specific surface areas, high chemical and mechanical stability, the SCOFs were used for the first time as stationary phases for high-efficiency separation of various small molecules and protein digests via short-column liquid chromatography.

11.
J Agric Food Chem ; 69(25): 7115-7126, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34152762

RESUMO

Microbiomes can greatly affect the quality of fermented food and beverages, including tea. In this study, microbial populations were characterized during black and green tea manufacturing, revealing that tea processing steps can drive both the bacterial and fungal community structure. Tea leaves were found to mostly harbor Proteobacteria, Bacteriodetes, Firmicutes, and Actinobacteria among bacteria and Ascomycetes among fungi. During processing, tea microbial populations changed especially between sterilized and unsterilized samples. The surface sterilization of fresh leaves before processing can remove many microbes, especially the bacteria of the genera Sphingomonas and Methylobacteria, indicating that these are mostly phylloplane microbes on tea leaves. The surface sterilization removed most fungi, except the Debaryomyces. We also observed a fluctuation in the content of several tea quality-related metabolites during processing. Caffeine and theanine were found in the same quantities in green tea with or without leaf surface sterilization. However, the sterilization process dramatically decreased the content of total catechins and theanine in black tea, indicating that microbes on the surface of tea leaf may be involved in maintaining the formation of these important metabolites during black tea processing.


Assuntos
Camellia sinensis , Catequina , Microbiota , Catequina/análise , Folhas de Planta/química , Chá
12.
ACS Appl Mater Interfaces ; 13(27): 31474-31484, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34192459

RESUMO

Owing to several key attributes, diamond is an attractive candidate material for neural interfacing electrodes. The emergence of additive-manufacturing (AM) of diamond-based materials has addressed multiple challenges associated with the fabrication of diamond electrodes using the conventional chemical vapor deposition (CVD) approach. Unlike the CVD approach, AM methods have enabled the deposition of three-dimensional diamond-based material at room temperature. This work demonstrates the feasibility of using laser metal deposition to fabricate diamond-titanium hybrid electrodes for neuronal interfacing. In addition to exhibiting a high electrochemical capacitance of 1.1 mF cm-2 and a low electrochemical impedance of 1 kΩ cm2 at 1 kHz in physiological saline, these electrodes exhibit a high degree of biocompatibility assessed in vitro using cortical neurons. Furthermore, surface characterization methods show the presence of an oxygen-rich mixed-phase diamond-titanium surface along the grain boundaries. Overall, we demonstrated that our unique approach facilitates printing biocompatible titanium-diamond site-specific coating-free conductive hybrid surfaces using AM, which paves the way to printing customized electrodes and interfacing implantable medical devices.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Encéfalo/citologia , Diamante/química , Neurônios/efeitos dos fármacos , Impressão Tridimensional , Titânio/química , Animais , Impedância Elétrica , Neurônios/citologia , Oxigênio/química , Propriedades de Superfície
13.
Blood ; 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111291

RESUMO

Internal tandem duplication within FLT3 (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and correlates with poor prognosis. While FLT3 receptor tyrosine kinase is activated at the plasma membrane to transduce PI3K/AKT and RAS/MAPK signaling, FLT3-ITD resides in the endoplasmic reticulum (ER) and triggers constitutive STAT5 phosphorylation. Mechanisms underlying this aberrant FLT3-ITD subcellular localization or its impact on leukemogenesis remain poorly established. Here we discover that FLT3-ITD is S-palmitoylated by the ZDHHC6 palmitoyl acyltransferase. Disruption of palmitoylation redirected FLT3-ITD to the plasma membrane and rewired its downstream signaling by activating AKT and ERK pathways in addition to STAT5. Consequently, abrogation of palmitoylation increased FLT3-ITD-mediated leukemic progression in xenotransplanted mouse models. We further demonstrate that FLT3 proteins were palmitoylated in primary human AML cells. ZDHHC6-mediated palmitoylation restrained FLT3-ITD surface expression, signaling and colonogenic growth of primary FLT3-ITD+ AMLs. More importantly, pharmacological inhibition of FLT3-ITD depalmitoylation synergized with FDA-approved FLT3 kinase inhibitor gilteritinib in abrogating the growth of primary FLT3-ITD+ AML cells. These findings provide novel insights into lipid-dependent compartmentalization of FLT3-ITD signaling in AML and suggest targeting depalmitoylation as a new therapeutic strategy to treat FLT3-ITD+ leukemias.

14.
Adv Mater ; : e2008225, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34114270

RESUMO

Magnetic-field-enhanced spin-polarized electronic/optical properties in semiconductors are crucial for fabricating various spintronic devices. However, this spin polarization is governed by weak spin exchange interactions and easily randomized by thermal fluctuations; therefore, it is only produced at cryogenic temperatures, which severely limits the applications. Herein, a room-temperature intrinsic magnetic field effect (MFE) on excitonic photoluminescence is achieved in CsPbX3 :Mn (X = Cl, Br) perovskite nanocrystals. Through moderate Mn doping, the MFE is enhanced by exciton-Mn interactions, and through partial Br substitution, the MFE is stabilized at room temperature by exciton orbital ordering. The orbital ordering significantly enhances the g-factor difference between electrons and holes, which is evidenced by a parallel orbit-orbit interaction among excitons generated by circular polarized laser excitation. This study provides a clear avenue for engineering spintronic materials based on orbital interactions in perovskites.

15.
ACS Nano ; 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110144

RESUMO

A barrier to the widespread adoption of electric vehicles is enabling fast charging lithium-ion batteries. At normal charging rates, lithium ions intercalate into the graphite electrode. At high charging rates, lithiation is inhomogeneous, and metallic lithium can plate on the graphite particles, reducing capacity and causing safety concerns. We have built a cell for conducting high-resolution in situ X-ray microtomography experiments to quantify three-dimensional lithiation inhomogeneity and lithium plating. Our studies reveal an unexpected correlation between these two phenomena. During fast charging, a layer of mossy lithium metal plates at the graphite electrode-separator interface. The transport bottlenecks resulting from this layer lead to underlithiated graphite particles well-removed from the separator, near the current collector. These underlithiated particles lie directly underneath the mossy lithium, suggesting that lithium plating inhibits further lithiation of the underlying electrode.

16.
Eur J Radiol ; 140: 109757, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33989967

RESUMO

OBJECTIVE: To compare image quality, radiation, and contrast medium (CM) doses between individualized and conventional scan protocols in combined coronary CT angiography (CCTA) and iliac artery CTA for kidney transplantation patients. METHODS: 148 patients needing assessment for coronary and iliac arteries before kidney transplantation were prospectively enrolled and randomly divided into the conventional and individualized groups. All patients underwent one-stop combined scans on a 256-row CT scanner with automatic tube current modulation, 50 % pre-ASIR-V to control radiation dose. CCTA was performed first using one heartbeat axial scan mode with bolus tracking technique and iliac CTA was performed 3 s after CCTA using a spiral scan. The conventional group (n = 72) used the standard protocol: 100 kVp, 60 mL of 350 mgI/mL CM at 4.5 mL/s flow rate. The individualized group (n = 76) used a body-mass-index (BMI)-dependent protocol: kVp: 80 (BMI < 24) and 100 (BMI ≥ 24) and CM: 19 mgI/kg (BMI < 18); 21 mgI/kg (18 ≤ BMI < 24); and 22 mgI/kg (BMI ≥ 24). Image quality radiation and CM doses of the two groups were compared. RESULTS: There was no significant difference in patient demographic data. Compared with the conventional group, the individualized group reduced contrast flow rate (in mL/s) by 14.4 % (3.85 ±â€¯0.72 vs. 4.5), contrast dose (in mL) by 35.8 % (38.53 ±â€¯7.18 vs. 60) and radiation dose (in mSv) by 34.3 % (4.30 ±â€¯1.73 vs. 6.54 ±â€¯1.45). The individualized group had significantly higher subjective image quality score (P < 0.05), lower noise (17.30 ±â€¯4.97 HU vs. 19.13 ±â€¯4.73 HU, P = 0.02) and higher signal-to-noise ratio (22.09 ±â€¯7.41 vs. 19.55 ±â€¯6.18, P = 0.03) for the three main vessels in CCTA compared with the conventional group. There were no differences in both subjective scores and objective measurements in iliac artery CTA between the two groups. CONCLUSION: The individualized scanning protocol in the one-stop assessment of coronary and iliac arteries before kidney transplantation significantly reduces both radiation and CM doses while maintaining image quality in iliac artery CTA and providing better coronary artery images in CCTA.


Assuntos
Transplante de Rim , Meios de Contraste , Angiografia Coronária , Redução da Medicação , Humanos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador
18.
Protein Expr Purif ; 184: 105892, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33895264

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is newly discovered virus which is the member of the order Bunyavirales, family phenuiviridae, phlebovirus genus. Its genome is composed of 3 segments of negative-sense RNA L, M and S. NSs is a non structure protein encoded by S segment which is important for viral replication and virulence. NSs protein of SFTSV is only involved in the regulation of host innate immune responses and suppression of IFN-promoter activities. So, the exact functions of this protein need to be studied deeply. To understand the exact role of NSs from SFTSV in viral replication and host immune response, a qualified antibody against this protein is required. In this study, NSs gene of SFTSV, was cloned into a bacterial expression vector (pGEX-6P-1) and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) cells. The SFTSV NSs fusion protein was purified using Glutathione Sepharose 4B and utilized as an antigen to immunize rabbits and obtain an anti-SFTSV NSs polyclonal antibody. Proper expression of the fusion protein and polyclonal antibody specificity were confirmed by western blotting and immunofluorescence analyses. The polyclonal antibody recognized NSs from SFTSV specifically. This is the first report that NSs can form viroplasm-like structures not only in infected cells but also in transfected cells with NSs plasmids. This polyclonal antibody will be useful for future studies of NSs functions.

19.
Sensors (Basel) ; 21(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809792

RESUMO

Fine-scale land use and land cover (LULC) data in a mining area are helpful for the smart supervision of mining activities. However, the complex landscape of open-pit mining areas severely restricts the classification accuracy. Although deep learning (DL) algorithms have the ability to extract informative features, they require large amounts of sample data. As a result, the design of more interpretable DL models with lower sample demand is highly important. In this study, a novel multi-level output-based deep belief network (DBN-ML) model was developed based on Ziyuan-3 imagery, which was applied for fine classification in an open-pit mine area of Wuhan City. First, the last DBN layer was used to output fine-scale land cover types. Then, one of the front DBN layers outputted the first-level land cover types. The coarse classification was easier and fewer DBN layers were sufficient. Finally, these two losses were weighted to optimize the DBN-ML model. As the first-level class provided a larger amount of additional sample data with no extra cost, the multi-level output strategy enhanced the robustness of the DBN-ML model. The proposed model produces an overall accuracy of 95.10% and an F1-score of 95.07%, outperforming some other models.

20.
Parasite ; 28: 19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33812451

RESUMO

Esafoxolaner, a purified enantiomer of afoxolaner with insecticidal and acaricidal properties, is combined with eprinomectin and praziquantel in NexGard® Combo, a novel topical endectoparasiticide formulation for cats. The parasiticide potencies of topical esafoxolaner, eprinomectin and praziquantel, are based on transcutaneous absorption, systemic distribution, and exposure of respective target parasites. For each compound, the pharmacokinetic profile, non-interference, dose linearity/proportionality after one administration, and the accumulation and time to reach a steady state after repeated monthly administrations of the novel formulation, were investigated. After one topical application of NexGard® Combo at the minimum recommended dose, the mean plasma concentration of esafoxolaner immediately reached (and remained at) a level supporting rapid onset and sustained efficacy against ectoparasites for at least 1 month. The mean Cmax, Tmax, T1/2, and the topical bioavailability of esafoxolaner were 130 ng/mL, 7.1 days, 21.7 days and 47.2%, respectively, and the plasma profiles of eprinomectin and praziquantel supported their known endoparasiticide properties. No relevant interference between the three compounds was observed. Dose proportionality was demonstrated for the three compounds over a range of 0.5× to 2× the minimum recommended dose. Steady state after repeated monthly administrations was reached by the second dose for praziquantel and by the fifth dose for esafoxolaner and eprinomectin. Accumulation was limited and drug plasma concentrations were maintained within a safe level.


Assuntos
Metoprene , Praziquantel , Administração Tópica , Animais , Gatos , Combinação de Medicamentos , Ivermectina/análogos & derivados , Pirazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...