Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Autism ; 10: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649809

RESUMO

Background: PHF21A has been associated with intellectual disability and craniofacial anomalies based on its deletion in the Potocki-Shaffer syndrome region at 11p11.2 and its disruption in three patients with balanced translocations. In addition, three patients with de novo truncating mutations in PHF21A were reported recently. Here, we analyze genomic data from seven unrelated individuals with mutations in PHF21A and provide detailed clinical descriptions, further expanding the phenotype associated with PHF21A haploinsufficiency. Methods: Diagnostic trio whole exome sequencing, Sanger sequencing, use of GeneMatcher, targeted gene panel sequencing, and MiSeq sequencing techniques were used to identify and confirm variants. RT-qPCR was used to measure the normal expression pattern of PHF21A in multiple human tissues including 13 different brain tissues. Protein-DNA modeling was performed to substantiate the pathogenicity of the missense mutation. Results: We have identified seven heterozygous coding mutations, among which six are de novo (not maternal in one). Mutations include four frameshifts, one nonsense mutation in two patients, and one heterozygous missense mutation in the AT Hook domain, predicted to be deleterious and likely to cause loss of PHF21A function. We also found a new C-terminal domain composed of an intrinsically disordered region. This domain is truncated in six patients and thus likely to play an important role in the function of PHF21A, suggesting that haploinsufficiency is the likely underlying mechanism in the phenotype of seven patients. Our results extend the phenotypic spectrum of PHF21A mutations by adding autism spectrum disorder, epilepsy, hypotonia, and neurobehavioral problems. Furthermore, PHF21A is highly expressed in the human fetal brain, which is consistent with the neurodevelopmental phenotype. Conclusion: Deleterious nonsense, frameshift, and missense mutations disrupting the AT Hook domain and/or an intrinsically disordered region in PHF21A were found to be associated with autism spectrum disorder, epilepsy, hypotonia, neurobehavioral problems, tapering fingers, clinodactyly, and syndactyly, in addition to intellectual disability and craniofacial anomalies. This suggests that PHF21A is involved in autism spectrum disorder and intellectual disability, and its haploinsufficiency causes a diverse neurological phenotype.

2.
Brain ; 142(10): 2948-2964, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501903

RESUMO

Axon pathfinding and synapse formation are essential processes for nervous system development and function. The assembly of myelinated fibres and nodes of Ranvier is mediated by a number of cell adhesion molecules of the immunoglobulin superfamily including neurofascin, encoded by the NFASC gene, and its alternative isoforms Nfasc186 and Nfasc140 (located in the axonal membrane at the node of Ranvier) and Nfasc155 (a glial component of the paranodal axoglial junction). We identified 10 individuals from six unrelated families, exhibiting a neurodevelopmental disorder characterized with a spectrum of central (intellectual disability, developmental delay, motor impairment, speech difficulties) and peripheral (early onset demyelinating neuropathy) neurological involvement, who were found by exome or genome sequencing to carry one frameshift and four different homozygous non-synonymous variants in NFASC. Expression studies using immunostaining-based techniques identified absent expression of the Nfasc155 isoform as a consequence of the frameshift variant and a significant reduction of expression was also observed in association with two non-synonymous variants affecting the fibronectin type III domain. Cell aggregation studies revealed a severely impaired Nfasc155-CNTN1/CASPR1 complex interaction as a result of the identified variants. Immunofluorescence staining of myelinated fibres from two affected individuals showed a severe loss of myelinated fibres and abnormalities in the paranodal junction morphology. Our results establish that recessive variants affecting the Nfasc155 isoform can affect the formation of paranodal axoglial junctions at the nodes of Ranvier. The genetic disease caused by biallelic NFASC variants includes neurodevelopmental impairment and a spectrum of central and peripheral demyelination as part of its core clinical phenotype. Our findings support possible overlapping molecular mechanisms of paranodal damage at peripheral nerves in both the immune-mediated and the genetic disease, but the observation of prominent central neurological involvement in NFASC biallelic variant carriers highlights the importance of this gene in human brain development and function.

3.
Eur J Hum Genet ; 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395947

RESUMO

PTPN23 is a His-domain protein-tyrosine phosphatase implicated in ciliogenesis, the endosomal sorting complex required for transport (ESCRT) pathway, and RNA splicing. Until recently, no defined human phenotype had been associated with alterations in this gene. We identified and report a cohort of seven patients with either homozygous or compound heterozygous rare deleterious variants in PTPN23. Combined with four patients previously reported, a total of 11 patients with this disorder have now been identified. We expand the phenotypic and variation spectrum associated with defects in this gene. Patients have strong phenotypic overlap, suggesting a defined autosomal recessive syndrome caused by reduced function of PTPN23. Shared characteristics of affected individuals include developmental delay, brain abnormalities (mainly ventriculomegaly and/or brain atrophy), intellectual disability, spasticity, language disorder, microcephaly, optic atrophy, and seizures. We observe a broad range of variants across patients that are likely strongly reducing the expression or disrupting the function of the protein. However, we do not observe any patients with an allele combination predicted to result in complete loss of function of PTPN23, as this is likely incompatible with life, consistent with reported embryonic lethality in the mouse. None of the observed or reported variants are recurrent, although some have been identified in homozygosis in patients from consanguineous populations. This study expands the phenotypic and molecular spectrum of PTPN23 associated disease and identifies major shared features among patients affected with this disorder, while providing additional support to the important role of PTPN23 in human nervous and visual system development and function.

4.
Nat Commun ; 10(1): 3094, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300657

RESUMO

AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de AMPA/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Heterozigoto , Humanos , Lactente , Mutação com Perda de Função , Imagem por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Adulto Jovem
5.
Am J Med Genet A ; 179(9): 1783-1790, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31294511

RESUMO

Rare individuals with 20p11.2 proximal deletions have been previously reported, with a variable phenotype that includes heterotaxy, biliary atresia, midline brain defects associated with panhypopituitarism, intellectual disability, scoliosis, and seizures. Deletions have ranged in size from 277 kb to 11.96 Mb. We describe a newborn with a de novo 2.7 Mb deletion of 20p11.22p11.21 that partially overlaps previously reported deletions and encompasses FOXA2. Her clinical findings further expand the 20p11.2 deletion phenotype to include severe midline cranial and intracranial defects such as aqueductal stenosis with hydrocephalus, mesencephalosynapsis with diencephalic-mesencephalic junction dysplasia, and pyriform aperture stenosis. We also report one individual with a missense variant in FOXA2 who had abnormal glucose homeostasis, panhypopituitarism, and endodermal organ dysfunction. Together, these findings support the critical role of FOXA2 in panhypopituitarism and midline defects.

6.
Am J Hum Genet ; 105(3): 631-639, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31353024

RESUMO

Notch signaling is an established developmental pathway for brain morphogenesis. Given that Delta-like 1 (DLL1) is a ligand for the Notch receptor and that a few individuals with developmental delay, intellectual disability, and brain malformations have microdeletions encompassing DLL1, we hypothesized that insufficiency of DLL1 causes a human neurodevelopmental disorder. We performed exome sequencing in individuals with neurodevelopmental disorders. The cohort was identified using known Matchmaker Exchange nodes such as GeneMatcher. This method identified 15 individuals from 12 unrelated families with heterozygous pathogenic DLL1 variants (nonsense, missense, splice site, and one whole gene deletion). The most common features in our cohort were intellectual disability, autism spectrum disorder, seizures, variable brain malformations, muscular hypotonia, and scoliosis. We did not identify an obvious genotype-phenotype correlation. Analysis of one splice site variant showed an in-frame insertion of 12 bp. In conclusion, heterozygous DLL1 pathogenic variants cause a variable neurodevelopmental phenotype and multi-systemic features. The clinical and molecular data support haploinsufficiency as a mechanism for the pathogenesis of this DLL1-related disorder and affirm the importance of DLL1 in human brain development.

7.
Hum Mutat ; 40(5): 532-538, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30740830

RESUMO

Syndromic sensorineural hearing loss is multigenic and associated with malformations of the ear and other organ systems. Herein we describe a child admitted to the NIH Undiagnosed Diseases Program with global developmental delay, sensorineural hearing loss, gastrointestinal abnormalities, and absent salivation. Next-generation sequencing revealed a uniparental isodisomy in chromosome 5, and a 22 kb homozygous deletion in SLC12A2, which encodes for sodium, potassium, and chloride transporter in the basolateral membrane of secretory epithelia. Functional studies using patient-derived fibroblasts showed truncated SLC12A2 transcripts and markedly reduced protein abundance when compared with control. Loss of Slc12a2 in mice has been shown to lead to deafness, abnormal neuronal growth and migration, severe gastrointestinal abnormalities, and absent salivation. Together with the described phenotype of the Slc12a2-knockout mouse model, our results suggest that the absence of functional SLC12A2 causes a new genetic syndrome and is crucial for the development of auditory, neurologic, and gastrointestinal tissues.

8.
Am J Med Genet A ; 179(5): 817-821, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30790422

RESUMO

Retinoic acid receptor beta (RARB) variants are heavily linked to pathologies of neural crest cell migration. The purpose of this report is to present a 23-month-old male with the previously described R387C RARB gain-of-function variant whose gastrointestinal issues and long-term constipation lead to the discovery of colonic hypoganglionosis. This case further delineates the pattern of malformation associated with RARB variants. The findings are also consistent with the known etiology of aganglionic colon due to failed neural crest cell migration.

9.
Genet Med ; 21(9): 2025-2035, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30723320

RESUMO

PURPOSE: Lanosterol synthase (LSS) gene was initially described in families with extensive congenital cataracts. Recently, a study has highlighted LSS associated with hypotrichosis simplex. We expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. It is a rare autosomal recessive condition characterized by hypotrichosis and intellectual disability (ID) or developmental delay (DD), frequently associated with early-onset epilepsy and other dermatological features. METHODS: Through a multicenter international collaborative study, we identified LSS pathogenic variants in APMR individuals either by exome sequencing or LSS Sanger sequencing. Splicing defects were assessed by transcript analysis and minigene assay. RESULTS: We reported ten APMR individuals from six unrelated families with biallelic variants in LSS. We additionally identified one affected individual with a single rare variant in LSS and an allelic imbalance suggesting a second event. Among the identified variants, two were truncating, seven were missense, and two were splicing variants. Quantification of cholesterol and its precursors did not reveal noticeable imbalance. CONCLUSION: In the cholesterol biosynthesis pathway, lanosterol synthase leads to the cyclization of (S)-2,3-oxidosqualene into lanosterol. Our data suggest LSS as a major gene causing a rare recessive neuroectodermal syndrome.

10.
Genet Med ; 21(9): 2036-2042, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30739909

RESUMO

PURPOSE: To define the clinical characteristics of patients with variants in TCF20, we describe 27 patients, 26 of whom were identified via exome sequencing. We compare detailed clinical data with 17 previously reported patients. METHODS: Patients were ascertained through molecular testing laboratories performing exome sequencing (and other testing) with orthogonal confirmation; collaborating referring clinicians provided detailed clinical information. RESULTS: The cohort of 27 patients all had novel variants, and ranged in age from 2 to 68 years. All had developmental delay/intellectual disability. Autism spectrum disorders/autistic features were reported in 69%, attention disorders or hyperactivity in 67%, craniofacial features (no recognizable facial gestalt) in 67%, structural brain anomalies in 24%, and seizures in 12%. Additional features affecting various organ systems were described in 93%. In a majority of patients, we did not observe previously reported findings of postnatal overgrowth or craniosynostosis, in comparison with earlier reports. CONCLUSION: We provide valuable data regarding the prognosis and clinical manifestations of patients with variants in TCF20.

11.
Genet Med ; 21(8): 1797-1807, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30679821

RESUMO

PURPOSE: Haploinsufficiency of USP7, located at chromosome 16p13.2, has recently been reported in seven individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), autism spectrum disorder (ASD), seizures, and hypogonadism. Further, USP7 was identified to critically incorporate into the MAGEL2-USP7-TRIM27 (MUST), such that pathogenic variants in USP7 lead to altered endosomal F-actin polymerization and dysregulated protein recycling. METHODS: We report 16 newly identified individuals with heterozygous USP7 variants, identified by genome or exome sequencing or by chromosome microarray analysis. Clinical features were evaluated by review of medical records. Additional clinical information was obtained on the seven previously reported individuals to fully elucidate the phenotypic expression associated with USP7 haploinsufficiency. RESULTS: The clinical manifestations of these 23 individuals suggest a syndrome characterized by DD/ID, hypotonia, eye anomalies,feeding difficulties, GERD, behavioral anomalies, and ASD, and more specific phenotypes of speech delays including a nonverbal phenotype and abnormal brain magnetic resonance image findings including white matter changes based on neuroradiologic examination. CONCLUSION: The consistency of clinical features among all individuals presented regardless of de novo USP7 variant type supports haploinsufficiency as a mechanism for pathogenesis and refines the clinical impact faced by affected individuals and caregivers.

12.
JCI Insight ; 1(9)2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27631024

RESUMO

Mosaicism is increasingly recognized as a cause of developmental disorders with the advent of next-generation sequencing (NGS). Mosaic mutations of PIK3CA have been associated with the widest spectrum of phenotypes associated with overgrowth and vascular malformations. We performed targeted NGS using 2 independent deep-coverage methods that utilize molecular inversion probes and amplicon sequencing in a cohort of 241 samples from 181 individuals with brain and/or body overgrowth. We identified PIK3CA mutations in 60 individuals. Several other individuals (n = 12) were identified separately to have mutations in PIK3CA by clinical targeted-panel testing (n = 6), whole-exome sequencing (n = 5), or Sanger sequencing (n = 1). Based on the clinical and molecular features, this cohort segregated into three distinct groups: (a) severe focal overgrowth due to low-level but highly activating (hotspot) mutations, (b) predominantly brain overgrowth and less severe somatic overgrowth due to less-activating mutations, and (c) intermediate phenotypes (capillary malformations with overgrowth) with intermediately activating mutations. Sixteen of 29 PIK3CA mutations were novel. We also identified constitutional PIK3CA mutations in 10 patients. Our molecular data, combined with review of the literature, show that PIK3CA-related overgrowth disorders comprise a discontinuous spectrum of disorders that correlate with the severity and distribution of mutations.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Malformações do Desenvolvimento Cortical/genética , Mosaicismo , Malformações Vasculares/genética , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Mutação , Fenótipo , Distribuição Tecidual
13.
Mol Syndromol ; 7(2): 80-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27385964

RESUMO

Prolidase deficiency (PD) is a rare genetic disorder caused by mutations in the peptidase D (PEPD) gene, affecting collagen degradation. Features include lower extremity ulcers, facial dysmorphism, frequent respiratory infections, and intellectual disability, though there is significant intra- and interfamilial variability. Twenty-eight mutations have been previously reported, all either small deletions/duplications or point mutations discovered by enzyme or DNA assays. PD has been reported in patients of various ethnic backgrounds, but never in the Mexican-American population. We describe the first Mexican-American patient with PD, who presented with typical facial features, developmental delay, microcephaly, and xerosis. Chromosome microarray analysis (CMA) revealed a homozygous deletion in the region of 19q13.11, estimated to be between 124.79 and 195.72 kb in size, representing the largest PEPD gene deletion reported to date and the first discovered by CMA.

14.
J Med Genet ; 52(9): 627-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26185144

RESUMO

BACKGROUND: The identification of the molecular basis of mitochondrial disorders continues to be challenging and expensive. The increasing usage of next-generation sequencing is facilitating the discovery of the genetic aetiology of heterogeneous phenotypes associated with these conditions. Coenzyme Q(10) (CoQ(10)) is an essential cofactor for mitochondrial respiratory chain complexes and other biochemical pathways. Mutations in genes involved in CoQ(10) biosynthesis cause primary CoQ(10) deficiency syndromes that can be treated with oral supplementation of ubiquinone. METHODS: We used whole exome sequencing to evaluate six probands from four unrelated families with clinical findings suggestive of a mitochondrial disorder. Clinical data were obtained by chart review, parental interviews, direct patient assessment and biochemical and pathological evaluation. RESULTS: We identified five recessive missense mutations in COQ4 segregating with disease in all four families. One mutation was found in a homozygous state in two unrelated Ashkenazi Jewish probands. All patients were female, and presented on the first day of life, and died in the neonatal period or early infancy. Clinical findings included hypotonia (6/6), encephalopathy with EEG abnormalities (4/4), neonatal seizures (3/6), cerebellar atrophy (4/5), cardiomyopathy (5/6) and lactic acidosis (4/6). Autopsy findings in two patients revealed neuron loss and reactive astrocytosis or cerebellar and brainstem hypoplasia and microdysgenesis. CONCLUSIONS: Mutations in COQ4 cause an autosomal recessive lethal neonatal mitochondrial encephalomyopathy associated with a founder mutation in the Ashkenazi Jewish population. The early mortality in our cohort suggests that COQ4 is an essential component of the multisubunit complex required for CoQ(10) biosynthesis.


Assuntos
Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Feminino , Humanos , Recém-Nascido , Judeus , Encefalomiopatias Mitocondriais/mortalidade , Encefalomiopatias Mitocondriais/fisiopatologia , Gravidez , Análise de Sequência de DNA , Ubiquinona/biossíntese
15.
Am J Med Genet A ; 164A(5): 1293-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24664931

RESUMO

Pectus carinatum and excavatum have multiple genetic associations. We report on a novel association of these deformities in a 34-month-old male and his father, likely due to a small intragenic deletion of MNAT1 (ménage a trois 1 gene). Both individuals share a deletion of MNAT1 located at 14q23.1 and an interstitial duplication of CHRNA7 located at 15q13.3. Deletion of MNAT1 has been associated with connective tissue abnormalities and is likely the etiology of the malformations, whereas the duplication of CHNRA7 is unlikely related due to the lack of association with any such connective tissue abnormalities.


Assuntos
Proteínas de Transporte/genética , Tórax em Funil/genética , Deleção de Sequência , Adulto , Pré-Escolar , Hibridização Genômica Comparativa , Facies , Tórax em Funil/diagnóstico , Estudos de Associação Genética , Humanos , Masculino , Fenótipo
16.
Cytogenet Genome Res ; 144(4): 280-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25632983

RESUMO

Constitutional chromosome instability so far has mainly been associated with ring formation. In addition, isochromosome formation involving the short arm with translocation of the entire long arm is rarely observed. This type of rearrangement has been reported for chromosomes 4, 5, 7, 9, 10, 12, and 20. Here, we present the third patient having an isochromosome 4p with 4q translocation, but showing for the first time chromosome instability detected by FISH following chromosome microarray analysis.


Assuntos
Instabilidade Cromossômica , Cromossomos Humanos Par 4/genética , Hibridização Genômica Comparativa/métodos , Hibridização in Situ Fluorescente/métodos , Translocação Genética , Humanos , Lactente , Isocromossomos , Masculino , Trissomia
17.
Am J Med Genet A ; 161A(8): 1992-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23894059

RESUMO

An array-CGH on 19-year-old male showed a proximal 1.11 Mb duplication and a distal 1.7 Mb deletion of 22q11.2 regions flanking the Velocardiofacial/DiGeorge syndrome region that remained intact. FISH analyses revealed both abnormalities to be on the same homolog 22. This double rearrangement lead to the co-existence of two syndromes: Cat eye and distal 22q11.2 microdeletion syndromes with a rare associated phenotype of oculo-auriculo-vertebral spectrum (OAVS). A review of the literature indicates that this is the second report of a proximal duplication and the fifth report of a distal deletion and OAVS suggestive of a possible OAVS candidate gene in this region.


Assuntos
Síndrome da Deleção 22q11/genética , Transtornos Cromossômicos/genética , Duplicação Cromossômica , Rearranjo Gênico , Síndrome de Goldenhar/genética , Síndrome da Deleção 22q11/complicações , Anormalidades Múltiplas , Adolescente , Adulto , Aneuploidia , Transtornos Cromossômicos/complicações , Cromossomos Humanos Par 22/genética , Hibridização Genômica Comparativa , Anormalidades do Olho , Feminino , Síndrome de Goldenhar/complicações , Humanos , Hibridização in Situ Fluorescente , Masculino , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA