*Phys Rev Lett ; 101(20): 206402, 2008 Nov 14.*

##### RESUMO

Motivated by the large interest in the nonequilibrium dynamics of low-dimensional quantum many-body systems, we present a fully microscopic theoretical and numerical study of the charge and spin dynamics in a one-dimensional ultracold Fermi gas following a quench. Our approach, which is based on time-dependent current-density-functional theory, is applicable well beyond the linear-response regime and produces both spin-charge separation and spin-drag-induced broadening of the spin packets.

*Phys Rev Lett ; 98(3): 030404, 2007 Jan 19.*

##### RESUMO

The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern.

*Phys Rev Lett ; 99(20): 206802, 2007 Nov 16.*

##### RESUMO

The pseudospin degree of freedom in a semiconductor bilayer gives rise to a collective mode analogous to the ferromagnetic-resonance mode of a ferromagnet. We present a many-body theory of the dependence of the energy and the damping of this mode on layer separation d. Based on these results, we discuss the possibilities of realizing transport-current driven pseudospin-transfer oscillators in semiconductors, and of using the pseudospin-transfer effect as an experimental probe of intersubband plasmons.

*Phys Rev Lett ; 95(1): 010401, 2005 Jul 01.*

##### RESUMO

Fully frustrated Josephson-junction arrays (FF-JJA's) exhibit a subtle compound phase transition in which an Ising transition associated with discrete broken translational symmetry and a Berezinskii-Kosterlitz-Thouless transition associated with quasi-long-range phase coherence occur nearly simultaneously. In this Letter we discuss a cold-atom realization of the FF-JJA system. We demonstrate that both orders can be studied by standard momentum-distribution-function measurements and present numerical results, based on a successful self-consistent spin-wave approximation, that illustrate the expected behavior of observables.

*Phys Rev Lett ; 93(19): 190403, 2004 Nov 05.*

##### RESUMO

We evaluate the frequencies of collective modes and the anisotropic expansion rate of a harmonically trapped Fermi superfluid at varying coupling strengths across a Feshbach resonance driving a BCS-BEC crossover. The equations of motion for the superfluid are obtained from a microscopic mean-field expression for the compressibility and are solved within a scaling ansatz. Our results confirm nonmonotonic behavior in the crossover region and are in quantitative agreement with current measurements of the transverse breathing mode by Kinast et al. [Phys. Rev. Lett. 92, 150402 (2004)]] and of the axial breathing mode by Bartenstein et al. [Phys. Rev. Lett. 92, 203201 (2004)]].

*Phys Rev Lett ; 86(20): 4447-50, 2001 May 14.*

##### RESUMO

We create Bose-Einstein condensates of 87Rb in a static magnetic trap with a superimposed blue-detuned 1D optical lattice. By displacing the magnetic trap center we are able to control the condensate evolution. We observe a change in the frequency of the center-of-mass oscillation in the harmonic trapping potential, in analogy with an increase in effective mass. For fluid velocities greater than a local speed of sound, we observe the onset of dissipative processes up to full removal of the superfluid component. A parallel simulation study visualizes the dynamics of the Bose-Einstein condensate and accounts for the main features of the observed behavior.

*Phys Rev Lett ; 85(14): 2850-3, 2000 Oct 02.*

##### RESUMO

We propose a new method for the evaluation of the particle density and kinetic pressure profiles in inhomogeneous one-dimensional systems of noninteracting fermions, and apply it to harmonically confined systems of up to N = 1000 fermions. The method invokes a Green's function operator in coordinate space, which is handled by techniques originally developed for the calculation of the density of single-particle states from Green's functions in the energy domain. In contrast to the Thomas-Fermi approximation, the exact profiles show negative local pressure in the tails and a prominent shell structure which may become accessible to observation in magnetically trapped gases of fermionic alkali atoms.

*Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics ; 60(2 Pt B): 2402-3, 1999 Aug.*

##### RESUMO

Deviations from a Stokes-Einstein relation between the self-diffusion coefficient D and shear viscosity eta for liquid metals near freezing are shown to correlate with a net transit parameter xi introduced recently by Wallace [Phys. Rev. E 58, 538 (1998)] in a two-parameter model of D. Brief comments are made on the single exception of In, for the seven liquid metals for which suitable experimental data are available.