Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 9: 541191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660499

RESUMO

For-profit biotechnological and pharmaceutical companies have played an essential role in the research and development (R&D) of innovative medical products and drugs for many decades and embody a trillion-dollar industry. The past decades have been marked by an increase in growth of social non-profit biotechnology companies and organizations led by entrepreneurs committed to solve (global) health issues. In this review, we define the concept of social bioentrepreneurship and consider the potential impact of such ventures on global health. We analyse the current status of non-profit biotechnology and clarify the strategy, motivation, funding, and marketing techniques of these enterprises. We find that these non-profit ventures mainly focus on neglected and rare diseases by using different but also similar funding, marketing, and business strategy approaches to for-profit biotechnology enterprises. We also identify good leadership, multidisciplinary teams, and public awareness as key components to achieve long-term survival and higher success rates. Challenges faced by bioentrepreneurs include the lack of a clearly defined regulatory environment or governmental incentives to support their endeavors. Overall, with this qualitative data review and market analysis we draw a promising picture of social non-profit bioentrepreneurship and underscore its current and future impact on global health issues.


Assuntos
Saúde Global , Organizações sem Fins Lucrativos , Biotecnologia , Comércio
2.
Compr Rev Food Sci Food Saf ; 20(6): 5722-5741, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34643023

RESUMO

Three-dimensional food printing (3DFP) uses additive manufacturing concepts to fabricate customized designed products with food ingredients in powder, liquid, dough, or paste presentations. In some cases, it uses additives, such as hydrocolloids, starch, enzymes, and antibrowning agents. Chocolate, cheese, sugar, and starch-based materials are among the most used ingredients for 3DFP, and there is a broad and growing interest in meat-, fruit-, vegetable-, insect-, and seaweed-based alternative raw materials. Here, we reviewed the most recent published information related to 3DFP for novel uses, including personalized nutrition and health-oriented applications, such as the use of 3D-printed food as a drug vehicle, and four-dimensional food printing (4DFP). We also reviewed the use of this technology in aesthetic food improvement, which is the most popular use of 3DFP recently. Finally, we provided a prospective and perspective view of this technology. We also reflected on its multidisciplinary character and identified aspects in which social and regulatory affairs must be addressed to fulfill the promises of 3DFP in human health improvement.


Assuntos
Chocolate , Impressão Tridimensional , Alimentos , Humanos , Estado Nutricional , Amido
3.
Biosensors (Basel) ; 11(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34677342

RESUMO

Loop-mediated isothermal amplification (LAMP) has been recently studied as an alternative method for cost-effective diagnostics in the context of the current COVID-19 pandemic. Recent reports document that LAMP-based diagnostic methods have a comparable sensitivity and specificity to that of RT-qPCR. We report the use of a portable Arduino-based LAMP-based amplification system assisted by pH microelectrodes for the accurate and reliable diagnosis of SARS-CoV-2 during the first 3 min of the amplification reaction. We show that this simple system enables a straightforward discrimination between samples containing or not containing artificial SARS-CoV-2 genetic material in the range of 10 to 10,000 copies per 50 µL of reaction mix. We also spiked saliva samples with SARS-CoV-2 synthetic material and corroborated that the LAMP reaction can be successfully monitored in real time using microelectrodes in saliva samples as well. These results may have profound implications for the design of real-time and portable quantitative systems for the reliable detection of viral pathogens including SARS-CoV-2.


Assuntos
COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/genética , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Microeletrodos , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Fosfoproteínas/genética , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , RNA Viral/metabolismo , Tempo de Reação , SARS-CoV-2/isolamento & purificação , Saliva/virologia
4.
ACS Appl Mater Interfaces ; 13(31): 37455-37465, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339168

RESUMO

Multi-material and multilayered micro- and nanostructures are prominently featured in nature and engineering and are recognized by their remarkable properties. Unfortunately, the fabrication of micro- and nanostructured materials through conventional processes is challenging and costly. Herein, we introduce a high-throughput, continuous, and versatile strategy for the fabrication of polymer fibers with complex multilayered nanostructures. Chaotic electrospinning (ChE) is based on the coupling of continuous chaotic printing (CCP) and electrospinning, which produces fibers with an internal multi-material microstructure. When a CCP printhead is used as an electrospinning nozzle, the diameter of the fibers is further scaled down by 3 orders of magnitude while preserving their internal structure. ChE enables the use of various polymer inks for the creation of nanofibers with a customizable number of internal nanolayers. Our results showcase the versatility and tunability of ChE to fabricate multilayered structures at the nanoscale at high throughput. We apply ChE to the synthesis of unique carbon textile electrodes composed of nanofibers with striations carved into their surface at regular intervals. These striated carbon electrodes with high surface areas exhibit 3- to 4-fold increases in specific capacitance compared to regular carbon nanofibers; ChE holds great promise for the cost-effective fabrication of electrodes for supercapacitors and other applications.

5.
ACS Biomater Sci Eng ; 7(8): 3964-3979, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197076

RESUMO

The use of three-dimensional (3D) printing for biomedical applications has expanded exponentially in recent years. However, the current portfolio of 3D printable inks is still limited. For instance, only few protein matrices have been explored as printing/bioprinting materials. Here, we introduce the use of zein, the primary constitutive protein in maize seeds, as a 3D printable material. Zein-based inks were prepared by dissolving commercial zein powder in ethanol with or without polyethylene glycol (PEG400) as a plasticizer. The rheological characteristics of our materials, studied during 21 days of aging/maturation, showed an increase in the apparent viscosity as a function of time in all formulations. The addition of PEG400 decreased the apparent viscosity. Inks with and without PEG400 and at different maturation times were tested for printability in a BioX bioprinter. We optimized the 3D printing parameters for each ink formulation in terms of extrusion pressure and linear printing velocity. Higher fidelity structures were obtained with inks that had maturation times of 10 to 14 days. We present different proof-of-concept experiments to demonstrate the versatility of the engineered zein inks for diverse biomedical applications. These include printing of complex and/or free-standing 3D structures, tablets for controlled drug release, and scaffolds for cell culture.


Assuntos
Bioimpressão , Zeína , Tinta , Impressão Tridimensional , Zea mays
6.
PLoS One ; 16(7): e0254430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34280210

RESUMO

We have investigated the importance of the rate of vaccination to contain COVID-19 in urban areas. We used an extremely simple epidemiological model that is amenable to implementation in an Excel spreadsheet and includes the demographics of social distancing, efficacy of massive testing and quarantine, and coverage and rate of vaccination as the main parameters to model the progression of COVID-19 pandemics in densely populated urban areas. Our model predicts that effective containment of pandemic progression in densely populated cities would be more effectively achieved by vaccination campaigns that consider the fast distribution and application of vaccines (i.e., 50% coverage in 6 months) while social distancing measures are still in place. Our results suggest that the rate of vaccination is more important than the overall vaccination coverage for containing COVID-19. In addition, our modeling indicates that widespread testing and quarantining of infected subjects would greatly benefit the success of vaccination campaigns. We envision this simple model as a friendly, readily accessible, and cost-effective tool for assisting health officials and local governments in the rational design/planning of vaccination strategies.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Software , Vacinação/estatística & dados numéricos , COVID-19/epidemiologia , Humanos , Modelos Estatísticos , Quarentena/estatística & dados numéricos , População Urbana/estatística & dados numéricos , Vacinação/métodos
7.
Appl Phys Rev ; 8(2): 021404, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34084254

RESUMO

Controlling cellular organization is crucial in the biofabrication of tissue-engineered scaffolds, as it affects cell behavior as well as the functionality of mature tissue. Thus far, incorporation of physiochemical cues with cell-size resolution in three-dimensional (3D) scaffolds has proven to be a challenging strategy to direct the desired cellular organization. In this work, a rapid, simple, and cost-effective approach is developed for continuous printing of multicompartmental hydrogel fibers with intrinsic 3D microfilaments to control cellular orientation. A static mixer integrated into a coaxial microfluidic device is utilized to print alginate/gelatin-methacryloyl (GelMA) hydrogel fibers with patterned internal microtopographies. In the engineered microstructure, GelMA compartments provide a cell-favorable environment, while alginate compartments offer morphological and mechanical cues that direct the cellular orientation. It is demonstrated that the organization of the microtopographies, and consequently the cellular alignment, can be tailored by controlling flow parameters in the printing process. Despite the large diameter of the fibers, the precisely tuned internal microtopographies induce excellent cell spreading and alignment, which facilitate rapid cell proliferation and differentiation toward mature biofabricated constructs. This strategy can advance the engineering of functional tissues.

8.
ACS Biomater Sci Eng ; 7(6): 2408-2419, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33979127

RESUMO

Microorganisms do not work alone but instead function as collaborative microsocieties. The spatial distribution of different bacterial strains (micro-biogeography) in a shared volumetric space and their degree of intimacy greatly influences their societal behavior. Current microbiological techniques are commonly focused on the culture of well-mixed bacterial communities and fail to reproduce the micro-biogeography of polybacterial societies. Here, we bioprinted fine-scale bacterial microcosms using chaotic flows induced by a printhead containing a static mixer. This straightforward approach (i.e., continuous chaotic bacterial bioprinting) enables the fabrication of hydrogel constructs with intercalated layers of bacterial strains. These multilayered constructs are used to analyze how the spatial distributions of bacteria affect their social behavior. For example, we show that bacteria within these biological microsystems engage in either cooperation or competition, depending on the degree of shared interface. The extent of inhibition in predator-prey scenarios (i.e., probiotic-pathogen bacteria) increases when bacteria are in greater intimacy. Furthermore, two Escherichia coli strains exhibit competitive behavior in well-mixed microenvironments, whereas stable coexistence prevails for longer times in spatially structured communities. We anticipate that chaotic bioprinting will contribute to the development of a greater complexity of polybacterial microsystems, tissue-microbiota models, and biomanufactured materials.


Assuntos
Bioimpressão , Bactérias , Hidrogéis , Impressão Tridimensional
9.
Diagnostics (Basel) ; 11(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578665

RESUMO

Massive worldwide serological testing for SARS-CoV-2 is needed to determine the extent of virus exposure in a particular region, the ratio of symptomatic to asymptomatic infected persons, and the duration and extent of immunity after infection. To achieve this, the development and production of reliable and cost-effective SARS-CoV-2 antigens is critical. We report the bacterial production of the peptide S-RBDN318-V510, which contains the receptor-binding domain of the SARS-CoV-2 spike protein (region of 193 amino acid residues from asparagine-318 to valine-510) of the SARS-CoV-2 spike protein. We purified this peptide using a straightforward approach involving bacterial lysis, his-tag-mediated affinity chromatography, and imidazole-assisted refolding. The antigen performances of S-RBDN318-V510 and a commercial full-length spike protein were compared in ELISAs. In direct ELISAs, where the antigen was directly bound to the ELISA surface, both antigens discriminated sera from non-exposed and exposed individuals. However, the discriminating resolution was better in ELISAs that used the full-spike antigen than the S-RBDN318-V510. Attachment of the antigens to the ELISA surface using a layer of anti-histidine antibodies gave equivalent resolution for both S-RBDN318-V510 and the full-length spike protein. Results demonstrate that ELISA-functional SARS-CoV-2 antigens can be produced in bacterial cultures, and that S-RBDN318-V510 may represent a cost-effective alternative to the use of structurally more complex antigens in serological COVID-19 testing.

10.
Sci Rep ; 11(1): 4327, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619337

RESUMO

COVID-19, the first pandemic of this decade and the second in less than 15 years, has harshly taught us that viral diseases do not recognize boundaries; however, they truly do discriminate between aggressive and mediocre containment responses. We present a simple epidemiological model that is amenable to implementation in Excel spreadsheets and sufficiently accurate to reproduce observed data on the evolution of the COVID-19 pandemics in different regions [i.e., New York City (NYC), South Korea, Mexico City]. We show that the model can be adapted to closely follow the evolution of COVID-19 in any large city by simply adjusting parameters related to demographic conditions and aggressiveness of the response from a society/government to epidemics. Moreover, we show that this simple epidemiological simulator can be used to assess the efficacy of the response of a government/society to an outbreak. The simplicity and accuracy of this model will greatly contribute to democratizing the availability of knowledge in societies regarding the extent of an epidemic event and the efficacy of a governmental response.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Pandemias/estatística & dados numéricos , SARS-CoV-2/patogenicidade , Epidemias/estatística & dados numéricos , Humanos , México/epidemiologia , Cidade de Nova Iorque/epidemiologia , República da Coreia/epidemiologia
11.
Biofabrication ; 13(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33418551

RESUMO

Multiple human tissues exhibit fibrous nature. Therefore, the fabrication of hydrogel filaments for tissue engineering is a trending topic. Current tissue models are made of materials that often require further enhancement for appropriate cell attachment, proliferation and differentiation. Here we present a simple strategy, based on the use of surface chaotic flows amenable to mathematical modeling, to fabricate continuous, long and thin filaments of gelatin methacryloyl (GelMA). The fabrication of these filaments is achieved by chaotic advection in a finely controlled and miniaturized version of the journal bearing system. A drop of GelMA pregel is injected on a higher-density viscous fluid (glycerin) and a chaotic flow is applied through an iterative process. The millimeter-scale hydrogel drop is exponentially deformed and elongated to generate a meter-scale fiber, which was then polymerized under UV-light exposure. Computational fluid dynamic (CFD) simulations are conducted to determine the characteristics of the flow and design the experimental conditions for fabrication of the fibers. GelMA fibers were effectively used as scaffolds for C2C12 myoblast cells. Experimental results demonstrate an accurate accordance with CFD simulations for the predicted length of the fibers. Plant-based viral nanoparticles (i.e.Turnip mosaic virus; TuMV) were then integrated to the hydrogel fibers as a secondary nano-scaffold for cells for enhanced muscle tissue engineering. The addition of TuMV significantly increased the metabolic activity of the cell-seeded fibers (p* < 0.05), strengthened cell attachment throughout the first 28 d, improved cell alignment, and promoted the generation of structures that resemble natural mammal muscle tissues. Chaotic two-dimensional-printing is proven to be a viable method for the fabrication of hydrogel fibers. The combined use of thin and long GelMA hydrogel fibers enhanced with flexuous virions offers a promising alternative for scaffolding of muscle cells and show potential to be used as cost-effective models for muscle tissue engineering purposes.


Assuntos
Bioimpressão , Nanopartículas , Animais , Gelatina , Humanos , Hidrogéis , Fibras Musculares Esqueléticas , Impressão Tridimensional , Engenharia Tecidual , Tecidos Suporte
12.
Biofabrication ; 12(4): 045027, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32945271

RESUMO

We report a method for expanding microchannel-embedded paper devices using a precisely controlled gas-foaming technique for the generation of volumetric tissue models in vitro. We successfully fabricated hollow, perfusable microchannel patterns contained in a densely entangled network of bacterial cellulose nanofibrils using matrix-assisted sacrificial three-dimensional printing, and demonstrated the maintenance of their structural integrity after gas-foaming-enabled expansion in an aqueous solution of NaBH4. The resulting expanded microchannel-embedded paper devices showed multilayered laminar structures with controllable thicknesses as a function of both NaBH4 concentration and expansion time. With expansion, the thickness and porosity of the bacterial cellulose network were significantly increased. As such, cellular infiltration was promoted comparing to as-prepared, non-expanded devices. This simple technique enables the generation of truly volumetric, cost-effective human-based tissue models, such as vascularized tumor models, for potential applications in preclinical drug screening and personalized therapeutic selection.


Assuntos
Microfluídica , Humanos , Dispositivos Lab-On-A-Chip , Impressão Tridimensional , Engenharia Tecidual , Tecidos Suporte
13.
PLoS One ; 15(8): e0237418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790779

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has crudely demonstrated the need for massive and rapid diagnostics. By the first week of July, more than 10,000,000 positive cases of COVID-19 have been reported worldwide, although this number could be greatly underestimated. In the case of an epidemic emergency, the first line of response should be based on commercially available and validated resources. Here, we demonstrate the use of the miniPCR, a commercial compact and portable PCR device recently available on the market, in combination with a commercial well-plate reader as a diagnostic system for detecting genetic material of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19. We used the miniPCR to detect and amplify SARS-CoV-2 DNA sequences using the sets of initiators recommended by the World Health Organization (WHO) for targeting three different regions that encode for the N protein. Prior to amplification, samples were combined with a DNA intercalating reagent (i.e., EvaGreen Dye). Sample fluorescence after amplification was then read using a commercial 96-well plate reader. This straightforward method allows the detection and amplification of SARS-CoV-2 nucleic acids in the range of ~625 to 2×105 DNA copies. The accuracy and simplicity of this diagnostics strategy may provide a cost-efficient and reliable alternative for COVID-19 pandemic testing, particularly in underdeveloped regions where RT-QPCR instrument availability may be limited. The portability, ease of use, and reproducibility of the miniPCR makes it a reliable alternative for deployment in point-of-care SARS-CoV-2 detection efforts during pandemics.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , Sequência de Bases , Betacoronavirus/química , COVID-19 , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , DNA Viral/genética , Confiabilidade dos Dados , Humanos , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , Pneumonia Viral/virologia , Reação em Cadeia da Polimerase/economia , Reprodutibilidade dos Testes , SARS-CoV-2 , Sensibilidade e Especificidade
14.
Sci Rep ; 10(1): 7543, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32372001

RESUMO

The detection and analysis of circulating tumor cells (CTCs) may enable a broad range of cancer-related applications, including the identification of acquired drug resistance during treatments. However, the non-scalable fabrication, prolonged sample processing times, and the lack of automation, associated with most of the technologies developed to isolate these rare cells, have impeded their transition into the clinical practice. This work describes a novel membrane-based microfiltration device comprised of a fully automated sample processing unit and a machine-vision-enabled imaging system that allows the efficient isolation and rapid analysis of CTCs from blood. The device performance was characterized using four prostate cancer cell lines, including PC-3, VCaP, DU-145, and LNCaP, obtaining high assay reproducibility and capture efficiencies greater than 93% after processing 7.5 mL blood samples spiked with 100 cancer cells. Cancer cells remained viable after filtration due to the minimal shear stress exerted over cells during the procedure, while the identification of cancer cells by immunostaining was not affected by the number of non-specific events captured on the membrane. We were also able to identify the androgen receptor (AR) point mutation T878A from 7.5 mL blood samples spiked with 50 LNCaP cells using RT-PCR and Sanger sequencing. Finally, CTCs were detected in 8 out of 8 samples from patients diagnosed with metastatic prostate cancer (mean ± SEM = 21 ± 2.957 CTCs/mL, median = 21 CTCs/mL), demonstrating the potential clinical utility of this device.


Assuntos
Separação Celular/instrumentação , Filtração/instrumentação , Células Neoplásicas Circulantes , Neoplasias da Próstata/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Engenharia Biomédica , Linhagem Celular Tumoral , Separação Celular/métodos , Filtração/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Reconhecimento Automatizado de Padrão , Polimetil Metacrilato/química , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Reprodutibilidade dos Testes
15.
Biofabrication ; 12(3): 035023, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32224513

RESUMO

This paper introduces the concept of continuous chaotic printing, i.e. the use of chaotic flows for deterministic and continuous extrusion of fibers with internal multilayered micro- or nanostructures. Two free-flowing materials are coextruded through a printhead containing a miniaturized Kenics static mixer (KSM) composed of multiple helicoidal elements. This produces a fiber with a well-defined internal multilayer microarchitecture at high-throughput (>1.0 m min-1). The number of mixing elements and the printhead diameter determine the number and thickness of the internal lamellae, which are generated according to successive bifurcations that yield a vast amount of inter-material surface area (∼102 cm2 cm-3) at high resolution (∼10 µm). This creates structures with extremely high surface area to volume ratio (SAV). Comparison of experimental and computational results demonstrates that continuous chaotic 3D printing is a robust process with predictable output. In an exciting new development, we demonstrate a method for scaling down these microstructures by 3 orders of magnitude, to the nanoscale level (∼150 nm), by feeding the output of a continuous chaotic 3D printhead into an electrospinner. The simplicity and high resolution of continuous chaotic printing strongly supports its potential use in novel applications, including-but not limited to-bioprinting of multi-scale layered biological structures such as bacterial communities, living tissues composed of organized multiple mammalian cell types, and fabrication of smart multi-material and multilayered constructs for biomedical applications.


Assuntos
Bioimpressão , Nanoestruturas/química , Alginatos/química , Bactérias/citologia , Grafite/química , Reprodutibilidade dos Testes , Engenharia Tecidual
16.
Sci Rep ; 9(1): 13766, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551445

RESUMO

Circulating tumor cells (CTCs) have the potential of becoming the gold standard marker for cancer diagnosis, prognosis and monitoring. However, current methods for its isolation and characterization suffer from equipment variability and human operator error that hinder its widespread use. Here we report the design and construction of a fully automated high-throughput fluorescence microscope that enables the imaging and classification of cancer cells that were labeled by immunostaining procedures. An excellent agreement between our machine vision-based approach and a state-of-the-art microscopy equipment was achieved. Our integral approach provides a path for operator-free and robust analysis of cancer cells as a standard clinical practice.


Assuntos
Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/metabolismo , Contagem de Células/métodos , Linhagem Celular Tumoral , Separação Celular/métodos , Humanos , Microscopia de Fluorescência/métodos , Células Neoplásicas Circulantes/metabolismo , Prognóstico
17.
Materials (Basel) ; 12(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514390

RESUMO

The ideal in vitro recreation of the micro-tumor niche-although much needed for a better understanding of cancer etiology and development of better anticancer therapies-is highly challenging. Tumors are complex three-dimensional (3D) tissues that establish a dynamic cross-talk with the surrounding tissues through complex chemical signaling. An extensive body of experimental evidence has established that 3D culture systems more closely recapitulate the architecture and the physiology of human solid tumors when compared with traditional 2D systems. Moreover, conventional 3D culture systems fail to recreate the dynamics of the tumor niche. Tumor-on-chip systems, which are microfluidic devices that aim to recreate relevant features of the tumor physiology, have recently emerged as powerful tools in cancer research. In tumor-on-chip systems, the use of microfluidics adds another dimension of physiological mimicry by allowing a continuous feed of nutrients (and pharmaceutical compounds). Here, we discuss recently published literature related to the culture of solid tumor-like tissues in microfluidic systems (tumor-on-chip devices). Our aim is to provide the readers with an overview of the state of the art on this particular theme and to illustrate the toolbox available today for engineering tumor-like structures (and their environments) in microfluidic devices. The suitability of tumor-on-chip devices is increasing in many areas of cancer research, including the study of the physiology of solid tumors, the screening of novel anticancer pharmaceutical compounds before resourcing to animal models, and the development of personalized treatments. In the years to come, additive manufacturing (3D bioprinting and 3D printing), computational fluid dynamics, and medium- to high-throughput omics will become powerful enablers of a new wave of more sophisticated and effective tumor-on-chip devices.

18.
PLoS One ; 14(5): e0215642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071117

RESUMO

The development of point-of-care (POC) diagnostic systems has received well-deserved attention in recent years in the scientific literature, and many experimental systems show great promise in real settings. However, in the case of an epidemic emergency (or a natural disaster), the first line of response should be based on commercially available and validated resources. Here, we compare the performance and ease of use of the miniPCR, a recently commercially available compact and portable PCR device, and a conventional thermocycler for the diagnostics of viral nucleic acids. We used both thermocyclers to detect and amplify Ebola and Zika DNA sequences of different lengths (in the range of 91 to 300 nucleotides) at different concentrations (in the range of ~50 to 4.0 x 108 DNA copies). Our results suggest that the performance of both thermocyclers is quite similar. Moreover, the portability, ease of use, and reproducibility of the miniPCR makes it a reliable alternative for point-of-care nucleic acid detection and amplification.


Assuntos
Doença pelo Vírus Ebola/diagnóstico , Reação em Cadeia da Polimerase/instrumentação , RNA Viral/genética , Infecção por Zika virus/diagnóstico , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Humanos , Miniaturização/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Zika virus/genética , Zika virus/isolamento & purificação
19.
Biomaterials ; 197: 345-367, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30690421

RESUMO

Closure of ocular wounds after an accident or surgery is typically performed by suturing, which is associated with numerous potential complications, including suture breakage, inflammation, secondary neovascularization, erosion to the surface and secondary infection, and astigmatism; for example, more than half of post-corneal transplant infections are due to suture related complications. Tissue adhesives provide promising substitutes for sutures in ophthalmic surgery. Ocular adhesives are not only intended to address the shortcomings of sutures, but also designed to be easy to use, and can potentially minimize post-operative complications. Herein, recent progress in the design, synthesis, and application of ocular adhesives, along with their advantages, limitations, and potential are discussed. This review covers two main classes of ocular adhesives: (1) synthetic adhesives based on cyanoacrylates, polyethylene glycol (PEG), and other synthetic polymers, and (2) adhesives based on naturally derived polymers, such as proteins and polysaccharides. In addition, different technologies to cover and protect ocular wounds such as contact bandage lenses, contact lenses coupled with novel technologies, and decellularized corneas are discussed. Continued advances in this area can help improve both patient satisfaction and clinical outcomes.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Traumatismos Oculares/terapia , Polímeros/uso terapêutico , Adesivos Teciduais/uso terapêutico , Cicatrização , Animais , Bandagens , Materiais Biocompatíveis/química , Lentes de Contato , Reagentes para Ligações Cruzadas/uso terapêutico , Cianoacrilatos/uso terapêutico , Sistemas de Liberação de Medicamentos , Olho/patologia , Humanos , Polietilenoglicóis/uso terapêutico , Polímeros/química , Polissacarídeos/uso terapêutico , Proteínas/uso terapêutico , Cicatrização/efeitos dos fármacos
20.
ACS Biomater Sci Eng ; 5(6): 2953-2964, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33405598

RESUMO

Tendon injuries are frequent and occur in the elderly, young, and athletic populations. The inadequate number of donors combined with many challenges associated with autografts, allografts, xenografts, and prosthetic devices have added to the value of engineering biological substitutes, which can be implanted to repair the damaged tendons. Electrospun scaffolds have the potential to mimic the native tissue structure along with desired mechanical properties and, thus, have attracted noticeable attention. In order to improve the biological responses of these fibrous structures, we designed and fabricated 3D multilayered composite scaffolds, where an electrospun nanofibrous substrate was coated with a thin layer of cell-laden hydrogel. The whole construct composition was optimized to achieve adequate mechanical and physical properties as well as cell viability and proliferation. Mesenchymal stem cells (MSCs) were differentiated by the addition of bone morphogenetic protein 12 (BMP-12). To mimic the natural function of tendons, the cell-laden scaffolds were mechanically stimulated using a custom-built bioreactor. The synergistic effect of mechanical and biochemical stimulation was observed in terms of enhanced cell viability, proliferation, alignment, and tenogenic differentiation. The results suggested that the proposed constructs can be used for engineering functional tendons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...