Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Tipo de estudo
Intervalo de ano de publicação
J Antimicrob Chemother ; 74(10): 2913-2915, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31340021


BACKGROUND: The emergence of drug-resistant Neisseria gonorrhoeae has prompted the development of rapid molecular assays designed to determine antimicrobial susceptibility. One common assay uses high-resolution melt analysis to target codon 91 of the gyrase A gene (gyrA) to predict N. gonorrhoeae susceptibility to ciprofloxacin. METHODS: We extracted DNA from remnant clinical specimens that had previously tested positive for N. gonorrhoeae using the Aptima Combo 2 for CT/NG assay (Hologic, San Diego, CA, USA). We selected DNA extracts from specimens with indeterminate, WT and mutant gyrA genotype results from a previous study using high-resolution melt analysis to detect the gyrA codon 91 mutation. We re-tested those specimens using the recently CE-marked ResistancePlus GC (beta) assay (SpeeDx, Sydney, Australia). RESULTS: Of 86 specimens with indeterminate gyrA genotypes on high-resolution melt analysis, the ResistancePlus GC (beta) assay (SpeeDx) identified 30 (35%) WT, 22 (26%) mutant and 34 (40%) indeterminate gyrA genotypes. CONCLUSIONS: The ResistancePlus GC (beta) assay showed improved N. gonorrhoeae gyrA genotype determination compared with a prior gyrA genotypic high-resolution melt assay.

JCI Insight ; 2(14)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28724793


Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.

Sci Rep ; 6: 24726, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27095412


Tissue engineering approaches have the potential to increase the physiologic relevance of human iPS-derived cells, such as cardiomyocytes (iPS-CM). However, forming Engineered Heart Muscle (EHM) typically requires >1 million cells per tissue. Existing miniaturization strategies involve complex approaches not amenable to mass production, limiting the ability to use EHM for iPS-based disease modeling and drug screening. Micro-scale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements. Here we describe an approach that combines features of EHM and cardiospheres: Micro-Heart Muscle (µHM) arrays, in which elongated muscle fibers are formed in an easily fabricated template, with as few as 2,000 iPS-CM per individual tissue. Within µHM, iPS-CM exhibit uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness, compared to monolayers with the same cellular composition. µHM mounted onto standard force measurement apparatus exhibited a robust Frank-Starling response to external stretch, and a dose-dependent inotropic response to the ß-adrenergic agonist isoproterenol. Based on the ease of fabrication, the potential for mass production and the small number of cells required to form µHM, this system provides a potentially powerful tool to study cardiomyocyte maturation, disease and cardiotoxicology in vitro.

Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Células Cultivadas , Imunofluorescência , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Sarcômeros , Células Estromais
Cell Stem Cell ; 18(4): 541-53, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26971820


Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function, developmental pathways, and disease mechanisms. Here, we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi, in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain, can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors, cardiomyocytes, and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn), CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types, dissect developmental pathways, and model disease.

Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Inativação Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos