Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32897866

RESUMO

Assessing dietary intake in epidemiological studies are predominantly based on self-reports, which are subjective, inefficient, and also prone to error. Technological approaches are therefore emerging to provide objective dietary assessments. Using only egocentric dietary intake videos, this work aims to provide accurate estimation on individual dietary intake through recognizing consumed food items and counting the number of bites taken. This is different from previous studies that rely on inertial sensing to count bites, and also previous studies that only recognize visible food items but not consumed ones. As a subject may not consume all food items visible in a meal, recognizing those consumed food items is more valuable. A new dataset that has 1,022 dietary intake video clips was constructed to validate our concept of bite counting and consumed food item recognition from egocentric videos. 12 subjects participated and 52 meals were captured. A total of 66 unique food items, including food ingredients and drinks, were labelled in the dataset along with a total of 2,039 labelled bites. Deep neural networks were used to perform bite counting and food item recognition in an end-to-end manner. Experiments have shown that counting bites directly from video clips can reach 74.15% top-1 accuracy (classifying between 0-4 bites in 20-second clips), and a MSE value of 0.312 (when using regression). Our experiments on video-based food recognition also show that recognizing consumed food items is indeed harder than recognizing visible ones, with a drop of 25% in F1 score. Videos are a rich source that contain both visual and motion information. Assuming dietary intake videos are available, they have the potential to address dietary intake assessment in a more efficient and simpler way than using multi-sensor fusion.

2.
Adv Mater ; 31(17): e1807001, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30773741

RESUMO

Electrochemical water splitting driven by sustainable energy such as solar, wind, and tide is attracting ever-increasing attention for sustainable production of clean hydrogen fuel from water. Leveraging these advances requires efficient and earth-abundant electrocatalysts to accelerate the kinetically sluggish hydrogen and oxygen evolution reactions (HER and OER). A large number of advanced water-splitting electrocatalysts have been developed through recent understanding of the electrochemical nature and engineering approaches. Specifically, strain engineering offers a novel route to promote the electrocatalytic HER/OER performances for efficient water splitting. Herein, the recent theoretical and experimental progress on applying strain to enhance heterogeneous electrocatalysts for both HER and OER are reviewed and future opportunities are discussed. A brief introduction of the fundamentals of water-splitting reactions, and the rationalization for utilizing mechanical strain to tune an electrocatalyst is given, followed by a discussion of the recent advances on strain-promoted HER and OER, with special emphasis given to combined theoretical and experimental approaches for determining the optimal straining effect for water electrolysis, along with experimental approaches for creating and characterizing strain in nanocatalysts, particularly emerging 2D nanomaterials. Finally, a vision for a future sustainable hydrogen fuel community based on strain-promoted water electrolysis is proposed.

3.
Angew Chem Int Ed Engl ; 57(46): 15045-15050, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30134041

RESUMO

Methanol is a major fuel and chemical feedstock currently produced from syngas, a CO/CO2 /H2 mixture. Herein we identify formate binding strength as a key parameter limiting the activity and stability of known catalysts for methanol synthesis in the presence of CO2 . We present a molybdenum phosphide catalyst for CO and CO2 reduction to methanol, which through a weaker interaction with formate, can improve the activity and stability of methanol synthesis catalysts in a wide range of CO/CO2 /H2 feeds.

4.
J Am Chem Soc ; 139(32): 11277-11287, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28738673

RESUMO

The electrochemical reduction of CO2 is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO2. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably for HCOO-, C2H4, and C2H5OH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO- over polycrystalline Ag and Sn. Interpretation of the findings for CO2 reduction was informed by studies of the reduction of glyoxal and CO, key intermediates along the reaction pathway to final products. Density functional theory calculations show that the alkali metal cations influence the distribution of products formed as a consequence of electrostatic interactions between solvated cations present at the outer Helmholtz plane and adsorbed species having large dipole moments. The observed trends in activity with cation size are attributed to an increase in the concentration of cations at the outer Helmholtz plane with increasing cation size.

5.
Nat Commun ; 8: 15113, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429782

RESUMO

Recently, sulfur (S)-vacancies created on the basal plane of 2H-molybdenum disulfide (MoS2) using argon plasma exposure exhibited higher intrinsic activity for the electrochemical hydrogen evolution reaction than the edge sites and metallic 1T-phase of MoS2 catalysts. However, a more industrially viable alternative to the argon plasma desulfurization process is needed. In this work, we introduce a scalable route towards generating S-vacancies on the MoS2 basal plane using electrochemical desulfurization. Even though sulfur atoms on the basal plane are known to be stable and inert, we find that they can be electrochemically reduced under accessible applied potentials. This can be done on various 2H-MoS2 nanostructures. By changing the applied desulfurization potential, the extent of desulfurization and the resulting activity can be varied. The resulting active sites are stable under extended desulfurization durations and show consistent HER activity.

6.
Phys Chem Chem Phys ; 19(5): 3575-3581, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094377

RESUMO

While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model to aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. This model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.

7.
Nat Mater ; 16(2): 225-229, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27723737

RESUMO

While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

8.
Science ; 354(6315): 1031-1036, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27885028

RESUMO

We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-corrected transmission electron microscopy. We observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.

9.
J Phys Chem Lett ; 7(19): 3931-3935, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27558978

RESUMO

Surface phase diagrams are necessary for understanding surface chemistry in electrochemical catalysis, where a range of adsorbates and coverages exist at varying applied potentials. These diagrams are typically constructed using intuition, which risks missing complex coverages and configurations at potentials of interest. More accurate cluster expansion methods are often difficult to implement quickly for new surfaces. We adopt a machine learning approach to rectify both issues. Using a Gaussian process regression model, the free energy of all possible adsorbate coverages for surfaces is predicted for a finite number of adsorption sites. Our result demonstrates a rational, simple, and systematic approach for generating accurate free-energy diagrams with reduced computational resources. The Pourbaix diagram for the IrO2(110) surface (with nine coverages from fully hydrogenated to fully oxygenated surfaces) is reconstructed using just 20 electronic structure relaxations, compared to approximately 90 using typical search methods. Similar efficiency is demonstrated for the MoS2 surface.

11.
Nat Mater ; 15(1): 48-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26552057

RESUMO

As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs ,,,,), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.

12.
ACS Nano ; 10(1): 624-32, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26624225

RESUMO

Amorphous MoSx is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS2 in composition and chemical state. However, structural changes in the MoSx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoSx catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmental TEM. For the first time, we directly observe the formation of crystalline domains in the MoSx catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoSx catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. These results have important implications for the application of this highly active electrocatalyst for sustainable H2 generation.

13.
ChemSusChem ; 8(13): 2180-6, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26097211

RESUMO

The electrochemical production of NH3 under ambient conditions represents an attractive prospect for sustainable agriculture, but electrocatalysts that selectively reduce N2 to NH3 remain elusive. In this work, we present insights from DFT calculations that describe limitations on the low-temperature electrocatalytic production of NH3 from N2 . In particular, we highlight the linear scaling relations of the adsorption energies of intermediates that can be used to model the overpotential requirements in this process. By using a two-variable description of the theoretical overpotential, we identify fundamental limitations on N2 reduction analogous to those present in processes such as oxygen evolution. Using these trends, we propose new strategies for catalyst design that may help guide the search for an electrocatalyst that can achieve selective N2 reduction.


Assuntos
Amônia/síntese química , Técnicas Eletroquímicas , Nitrogênio/química , Oxirredução , Elementos de Transição/química
14.
J Phys Chem Lett ; 6(18): 3670-4, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26722740

RESUMO

In this Letter, we examine bond activation induced by nonmetal surface promoters in the context of dehydrogenation reactions. We use C-H bond activation in methane dehydrogenation on transition metals as an example to understand the origin of the promoting or poisoning effect of nonmetals. The electronic structure of the surface and the bond order of the promoter are found to establish all trends in bond activation. On the basis of these results, we develop a predictive model that successfully describes the energetics of C-H, O-H, and N-H bond activation across a range of reactions. For a given reaction step, a single data point determines whether a nonmetal will promote bond activation or poison the surface and by how much. We show how our model leads to general insights that can be directly used to predict bond activation energetics on transition metal sulfides and oxides, which can be perceived as promoted surfaces. These results can then be directly used in studies on full catalytic pathways.

15.
Phys Chem Chem Phys ; 16(26): 13156-64, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24866567

RESUMO

MoSe2 and WSe2 nanofilms and nanosheets have recently been shown to be active for electrochemical H2 evolution (HER). In this work, we used periodic density functional theory to investigate the origin of the catalytic activity on these materials. We determined the relevant structures of the Mo/W-edges and the Se-edges under HER conditions and their differential hydrogen adsorption free energies. The Mo-edge on MoSe2 and the Se-edge on both MoSe2 and WSe2 are found to be the predominantly active facets for these catalysts, with activity predicted to be comparable to or better than MoS2. On the other hand, the (0001) basal planes are found to be inert. We further explain the enhanced activity at the edges in terms of localized edge states, which provide insight into the trends in HER activity seen between the two catalysts. Our results thus suggest that an optimal catalyst design should maximize the exposure of edge sites. Comparisons are also made between the transition metal selenide catalysts and their sulfide counterparts in order to understand the consequences of having either Mo/W or Se/S atoms. It is found that linear scaling relations describe the S/Se binding onto the edge and the H binding onto the S/Se.

16.
Nano Lett ; 14(3): 1381-7, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24499163

RESUMO

The hydrogen evolution reaction (HER) on supported MoS2 catalysts is investigated using periodic density functional theory, employing the new BEEF-vdW functional that explicitly takes long-range van der Waals (vdW) forces into account. We find that the support interactions involving vdW forces leads to significant changes in the hydrogen binding energy, resulting in several orders of magnitude difference in HER activity. It is generally seen for the Mo-edge that strong adhesion of the catalyst onto the support leads to weakening in the hydrogen binding. This presents a way to optimally tune the hydrogen binding on MoS2 and explains the lower than expected exchange current densities of supported MoS2 in electrochemical H2 evolution studies.

17.
J Phys Chem Lett ; 5(21): 3884-9, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278764

RESUMO

Density functional theory is used to investigate the adsorption and structural properties of layered transition-metal sulfide (TMS) catalysts. We considered both the (101̅0) M-edge and (1̅010) S-edge terminations for a wide range of pure and doped TMSs, determined their sulfur coverage under realistic operating conditions (i.e, steady-state structures), and calculated an extensive set of chemisorption energies for several important reactions. On the basis of these results, we show that the d-band center, εd, of the edge-most metal site at 0 ML sulfur coverage is a general electronic descriptor for both structure and adsorption energies, which are known to describe catalytic activity. A negative linear correlation between adsorbate-S binding and S-metal binding allows εd to describe the adsorption of species on both metal and sulfur sites. Our results provide a significant simplification in the understanding of structure-activity relationships in TMSs and provides guidelines for the rational design and large-scale screening of these catalysts for various processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...