Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
PLoS Genet ; 15(4): e1008092, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31022184

RESUMO

Human leukocyte antigen (HLA) is a key genetic factor conferring risk of systemic lupus erythematosus (SLE), but precise independent localization of HLA effects is extremely challenging. As a result, the contribution of specific HLA alleles and amino-acid residues to the overall risk of SLE and to risk of specific autoantibodies are far from completely understood. Here, we dissected (a) overall SLE association signals across HLA, (b) HLA-peptide interaction, and (c) residue-autoantibody association. Classical alleles, SNPs, and amino-acid residues of eight HLA genes were imputed across 4,915 SLE cases and 13,513 controls from Eastern Asia. We performed association followed by conditional analysis across HLA, assessing both overall SLE risk and risk of autoantibody production. DR15 alleles HLA-DRB1*15:01 (P = 1.4x10-27, odds ratio (OR) = 1.57) and HLA-DQB1*06:02 (P = 7.4x10-23, OR = 1.55) formed the most significant haplotype (OR = 2.33). Conditioned protein-residue signals were stronger than allele signals and mapped predominantly to HLA-DRB1 residue 13 (P = 2.2x10-75) and its proxy position 11 (P = 1.1x10-67), followed by HLA-DRB1-37 (P = 4.5x10-24). After conditioning on HLA-DRB1, novel associations at HLA-A-70 (P = 1.4x10-8), HLA-DPB1-35 (P = 9.0x10-16), HLA-DQB1-37 (P = 2.7x10-14), and HLA-B-9 (P = 6.5x10-15) emerged. Together, these seven residues increased the proportion of explained heritability due to HLA to 2.6%. Risk residues for both overall disease and hallmark autoantibodies (i.e., nRNP: DRB1-11, P = 2.0x10-14; DRB1-13, P = 2.9x10-13; DRB1-30, P = 3.9x10-14) localized to the peptide-binding groove of HLA-DRB1. Enrichment for specific amino-acid characteristics in the peptide-binding groove correlated with overall SLE risk and with autoantibody presence. Risk residues were in primarily negatively charged side-chains, in contrast with rheumatoid arthritis. We identified novel SLE signals in HLA Class I loci (HLA-A, HLA-B), and localized primary Class II signals to five residues in HLA-DRB1, HLA-DPB1, and HLA-DQB1. These findings provide insights about the mechanisms by which the risk residues interact with each other to produce autoantibodies and are involved in SLE pathophysiology.


Assuntos
Sequência de Aminoácidos , Autoanticorpos/imunologia , Suscetibilidade a Doenças , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Lúpus Eritematoso Sistêmico/etiologia , Alelos , Substituição de Aminoácidos , Grupo com Ancestrais do Continente Asiático , Feminino , Predisposição Genética para Doença , Variação Genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Masculino , Razão de Chances , Polimorfismo de Nucleotídeo Único
2.
Hum Mol Genet ; 27(21): 3813-3824, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085094

RESUMO

Genetic variation within the major histocompatibility complex (MHC) contributes substantial risk for systemic lupus erythematosus, but high gene density, extreme polymorphism and extensive linkage disequilibrium (LD) have made fine mapping challenging. To address the problem, we compared two association techniques in two ancestrally diverse populations, African Americans (AAs) and Europeans (EURs). We observed a greater number of Human Leucocyte Antigen (HLA) alleles in AA consistent with the elevated level of recombination in this population. In EUR we observed 50 different A-C-B-DRB1-DQA-DQB multilocus haplotype sequences per hundred individuals; in the AA sample, these multilocus haplotypes were twice as common compared to Europeans. We also observed a strong narrow class II signal in AA as opposed to the long-range LD observed in EUR that includes class I alleles. We performed a Bayesian model choice of the classical HLA alleles and a frequentist analysis that combined both single nucleotide polymorphisms (SNPs) and classical HLA alleles. Both analyses converged on a similar subset of risk HLA alleles: in EUR HLA- B*08:01 + B*18:01 + (DRB1*15:01 frequentist only) + DQA*01:02 + DQB*02:01 + DRB3*02 and in AA HLA-C*17:01 + B*08:01 + DRB1*15:03 + (DQA*01:02 frequentist only) + DQA*02:01 + DQA*05:01+ DQA*05:05 + DQB*03:19 + DQB*02:02. We observed two additional independent SNP associations in both populations: EUR rs146903072 and rs501480; AA rs389883 and rs114118665. The DR2 serotype was best explained by DRB1*15:03 + DQA*01:02 in AA and by DRB1*15:01 + DQA*01:02 in EUR. The DR3 serotype was best explained by DQA*05:01 in AA and by DQB*02:01 in EUR. Despite some differences in underlying HLA allele risk models in EUR and AA, SNP signals across the extended MHC showed remarkable similarity and significant concordance in direction of effect for risk-associated variants.

3.
Sci Rep ; 8(1): 11713, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065249

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

4.
Sci Rep ; 8(1): 9962, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967481

RESUMO

Impact of genetic variants on the age of systemic lupus erythematosus (SLE) onset was not fully understood. We investigated a cumulative effect of SLE-risk variants on the age of SLE onset and scanned genome-wide SNPs to search for new risk loci of childhood-onset SLE (cSLE). We analyzed 781 Korean single-center SLE subjects who previously genotyped by both Immunochip and genome-wide SNP arrays. Individual genetic risk scores (GRS) from well-validated SLE susceptibility loci were calculated and tested for their association with cSLE (<16 years at onset). Single-variant association tests were performed using a multivariable logistic regression adjusting for population stratification. GRS from SLE susceptibility loci was significantly higher in cSLE than aSLE (p = 1.23 × 10-3). Two SNPs, rs7460469 in XKR6 (p = 1.26 × 10-8, OR = 5.58) and rs7300146 in GLT1D1 p = 1.49 × 10-8, OR = 2.85), showed the most significant associations with cSLE. The model consisting of GRS of SLE and two newly identified loci showed an area under curve (AUC) of 0.71 in a receiver operating characteristics (ROC) curve for prediction of cSLE. In conclusion, cSLE is associated with a high cumulative SLE-risk effect and two novel SNPs rs7460469 and rs7300146, providing the first predictive model for cSLE in Koreans.

5.
Hum Mol Genet ; 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29912393

RESUMO

Systemic Lupus Erythematosus (SLE or lupus) (OMIM: 152700) is a chronic autoimmune disease with debilitating inflammation that affects multiple organ systems. The STAT1-STAT4 locus is one of the first and most highly-replicated genetic loci associated with lupus risk. We performed a fine-mapping study to identify plausible causal variants within the STAT1-STAT4 locus associated with increased lupus disease risk. Using complementary frequentist and Bayesian approaches in trans-ancestral Discovery and Replication cohorts, we found one variant whose association with lupus risk is supported across ancestries in both the Discovery and Replication cohorts: rs11889341. In B cell lines from patients with lupus and healthy controls, the lupus risk allele of rs11889341 was associated with increased STAT1 expression. We demonstrated that the transcription factor HMGA1, a member of the HMG transcription factor family with an AT-hook DNA-binding domain, has enriched binding to the risk allele compared to the non-risk allele of rs11889341. We identified a genotype-dependent repressive element in the DNA within the intron of STAT4 surrounding rs11889341. Consistent with expression quantitative trait locus (eQTL) analysis, the lupus risk allele of rs11889341 decreased the activity of this putative repressor. Altogether, we present a plausible molecular mechanism for increased lupus risk at the STAT1-STAT4 locus in which the risk allele of rs11889341, the most probable causal variant, leads to elevated STAT1 expression in B cells due to decreased repressor activity mediated by increased binding of HMGA1.

6.
PLoS One ; 13(6): e0199003, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953444

RESUMO

OBJECTIVE: African Americans, East Asians, and Hispanics with systemic lupus erythematous (SLE) are more likely to develop lupus nephritis (LN) than are SLE patients of European descent. The etiology of this difference is not clear, and this study was undertaken to investigate how genetic variants might explain this effect. METHODS: In this cross-sectional study, 1244 SLE patients from multiethnic case collections were genotyped for 817,810 single-nucleotide polymorphisms (SNPs) across the genome. Continental genetic ancestry was estimated utilizing the program ADMIXTURE. Gene-based testing and pathway analysis was performed within each ethnic group and meta-analyzed across ethnicities. We also performed candidate SNP association tests with SNPs previously established as risk alleles for SLE, LN, and chronic kidney disease (CKD). Association testing and logistic regression models were performed with LN as the outcome, adjusted for continental ancestries, sex, disease duration, and age. RESULTS: We studied 255 North European, 263 South European, 238 Hispanic, 224 African American and 264 East Asian SLE patients, of whom 606 had LN (48.7%). In genome-wide gene-based and candidate SNP analyses, we found distinct genes, pathways and established risk SNPs associated with LN for each ethnic group. Gene-based analyses showed significant associations between variation in ZNF546 (p = 1.0E-06), TRIM15 (p = 1.0E-06), and TRIMI0 (p = 1.0E-06) and LN among South Europeans, and TTC34 (p = 8.0E-06) was significantly associated with LN among Hispanics. The SNP rs8091180 in NFATC1 was associated with LN (OR 1.43, p = 3.3E-04) in the candidate SNP meta-analysis with the highest OR among African-Americans (OR 2.17, p = 0.0035). CONCLUSION: Distinct genetic factors are associated with the risk of LN in SLE patients of different ethnicities. CKD risk alleles may play a role in the development of LN in addition to SLE-associated risk variants. These findings may further explain the clinical heterogeneity of LN risk and response to therapy observed between different ethnic groups.

7.
Front Immunol ; 9: 749, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706965

RESUMO

Objectives: Fibroblast-like synoviocytes (FLS) exhibit a unique aggressive phenotype in rheumatoid arthritis (RA). Increased FLS migration and subsequent invasion of the extracellular matrix are essential to joint destruction in RA. Our previous research reported that transcription factor SOX5 was highly expressed in RA-FLS. Here, the effects of SOX5 in RA-FLS migration and invasion will be investigated. Methods: The migration and invasion of RA-FLS were evaluated using a transwell chamber assay. The expression of several potential SOX5-targeted genes, including matrix metalloproteinases (MMP-1, 2, 3 and 9), chemokines (CCL4, CCL2, CCR5 and CCR2), and pro-inflammatory cytokines (TNF-α and IL-6), were examined in RA-FLS using SOX5 gain- and loss-of-function study. The molecular mechanisms of SOX5-mediated MMP-9 expressions were assayed by luciferase reporter gene and chromatin immunoprecipitation (ChIP) studies. The in vivo effect of SOX5 on FLS migration and invasion was examined using collagen-induced arthritis (CIA) in DBA/1J mice. Results: Knockdown SOX5 decreased lamellipodium formation, migration, and invasion of RA-FLS. The expression of MMP-9 was the only gene tested to be concomitantly affected by silencing or overexpressing SOX5. ChIP assay revealed that SOX5 was bound to the MMP-9 promoter in RA-FLS. The overexpression of SOX5 markedly enhanced the MMP-9 promoter activity, and specific deletion of a putative SOX5-binding site in MMP-9 promoter diminished this promoter-driven transcription in FLS. Locally knocked down SOX5 inhibited MMP-9 expression in the joint tissue and reduced pannus migration and invasion into the cartilage in CIA mice. Conclusion: SOX5 plays a novel role in mediating migration and invasion of FLS in part by regulating MMP-9 expression in RA.

8.
Curr Rheumatol Rep ; 19(11): 68, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983873

RESUMO

PURPOSE OF REVIEW: Our understanding on genetic basis of SLE has been advanced through genome-wide association studies. We review recent progress in lupus genetics with a focus on SLE-associated loci that have been functionally characterized, and discuss the potential for clinical translation of genetics data. RECENT FINDINGS: Over 100 loci have been confirmed to show robust association with SLE and many share with other immune-mediated diseases. Although causative variants captured at these established loci are limited, they guide biological studies of gene targets for functional characterization which highlight the importance of aberrant recognition of self-nucleic acid, type I interferon overproduction, and defective immune cell signaling underlying the pathogenesis of SLE. Increasing examples illustrate a predictive value of genetic findings in susceptibility/prognosis prediction, clinical classification, and pharmacological implication. Genetic findings provide a foundation for better understanding of disease pathogenic mechanisms and opportunities for target selection in lupus drug development.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Humanos , Transdução de Sinais/genética
9.
Nat Genet ; 49(3): 433-437, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28135245

RESUMO

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a strong genetic component characterized by autoantibody production and a type I interferon signature. Here we report a missense variant (g.74779296G>A; p.Arg90His) in NCF1, encoding the p47phox subunit of the phagocyte NADPH oxidase (NOX2), as the putative underlying causal variant that drives a strong SLE-associated signal detected by the Immunochip in the GTF2IRD1-GTF2I region at 7q11.23 with a complex genomic structure. We show that the p.Arg90His substitution, which is reported to cause reduced reactive oxygen species (ROS) production, predisposes to SLE (odds ratio (OR) = 3.47 in Asians (Pmeta = 3.1 × 10-104), OR = 2.61 in European Americans, OR = 2.02 in African Americans) and other autoimmune diseases, including primary Sjögren's syndrome (OR = 2.45 in Chinese, OR = 2.35 in European Americans) and rheumatoid arthritis (OR = 1.65 in Koreans). Additionally, decreased and increased copy numbers of NCF1 predispose to and protect against SLE, respectively. Our data highlight the pathogenic role of reduced NOX2-derived ROS levels in autoimmune diseases.


Assuntos
Doenças Autoimunes/genética , Predisposição Genética para Doença/genética , NADPH Oxidases/genética , Polimorfismo de Nucleotídeo Único/genética , Afro-Americanos/genética , Grupo com Ancestrais do Continente Asiático/genética , Estudos de Casos e Controles , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Humanos , Lúpus Eritematoso Sistêmico/genética , Masculino , Espécies Reativas de Oxigênio/metabolismo , Síndrome de Sjogren/genética
10.
Rheumatology (Oxford) ; 56(3): 467-476, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940592

RESUMO

Objective: The importance of hypomethylation in SLE is well recognized; however, the significance of hypermethylation has not been well characterized. We screened hypermethylated marks in SLE and investigated their possible implications. Methods: DNA methylation marks were screened in SLE whole-blood DNA by microarray, and two marks ( CD3Z and VHL hypermethylations) were confirmed by a methylation single-base extension method in two independent ethnic cohorts consisting of 207 SLE patients and 151 controls. The correlation with clinical manifestations and the genetic influence on those epigenetic marks were analysed. Results: Two epigenetic marks, CD3Z and VHL hypermethylation, were significantly correlated with SLE: CD3Z hypermethylation (odds ratio = 7.76; P = 1.71 × 10 -13 ) and VHL hypermethylation (odds ratio = 3.77; P = 3.20 × 10 -8 ), and the increased CD3Z methylation was correlated with downregulation of the CD3ζ-chain in SLE T cells. In addition, less genetic influence on CD3Z methylation relative to VHL methylation was found in analyses of longitudinal and twin samples. Furthermore, a higher CD3Z methylation level was significantly correlated with a higher SLE disease activity index and more severe clinical manifestations, such as proteinuria, haemolytic anaemia and thrombocytopenia, whereas VHL hypermethylation was not. Conclusion: CD3Z hypermethylation is an SLE risk factor that can be modified by environmental factors and is associated with more severe SLE clinical manifestations, which are related to deranged T cell function by downregulating the CD3ζ-chain.


Assuntos
Complexo CD3/genética , Metilação de DNA/genética , Lúpus Eritematoso Sistêmico/genética , Linfócitos T/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Adulto , Complexo CD3/metabolismo , Estudos de Casos e Controles , Regulação para Baixo , Epigênese Genética , Feminino , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Masculino , Pessoa de Meia-Idade , Razão de Chances , República da Coreia , Linfócitos T/imunologia , Estados Unidos , Adulto Jovem
11.
Sci Rep ; 6: 32001, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550416

RESUMO

Receptor activator of nuclear factor κB ligand (RANKL) is critically involved in bone erosion of rheumatoid arthritis (RA). We previously reported association between younger age at onset of RA and a RANKL promoter SNP that conferred an elevated promoter activity via binding to a transcription factor SOX5. Here we study the regulation of SOX5 levels in relation to RANKL expression in RA synovial fibroblasts (SF) and the development of bone erosion in the collagen-induced arthritis (CIA) mouse. Our data indicated SOX5 levels were higher in synovium and synovial fluid from RA compared to osteoarthritis patients. Pro-inflammatory cytokines upregulated SOX5 and RANKL expression in both primary RA SF and the rheumatoid synovial fibroblast cell line, MH7A. Overexpression of SOX5 resulted in significantly increased RANKL levels, while knockdown of SOX5 resulted in diminished IL-6 mediated RANKL upregulation in MH7A cells. Chromatin immunoprecipitation (ChIP) showed approximately 3-fold enrichment of RANKL-specific DNA in anti-SOX5 immunoprecipitate in IL-6 treated MH7A cells as compared to untreated cells. Locally silencing SOX5 gene significantly diminished RANKL positive cells and bone erosion in CIA mice. These findings suggest SOX5 is an important regulator of IL-6-induced RANKL expression in RA SF.


Assuntos
Artrite Experimental/metabolismo , Interleucina-6/metabolismo , Osteoartrite/metabolismo , Ligante RANK/genética , Fatores de Transcrição SOXD/metabolismo , Membrana Sinovial/metabolismo , Animais , Artrite Experimental/induzido quimicamente , Linhagem Celular , Colágeno/efeitos adversos , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Regulação para Cima
12.
Elife ; 52016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26880555

RESUMO

Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls produced a comprehensive dataset of the variations causing susceptibility to systemic lupus erythematosus (SLE). Two independent disease association signals in the HLA-D region identified two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription factor binding sites. These extensive functional variations are a new and potent facet of HLA polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9 regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR and DQ molecules on dendritic cells with SLE risk genotypes, which increases to over 4-fold after stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly linked with disease-associated SNPs and demonstrated that common disease alleles contain multiple causal variants modulating multiple immune system genes.


Assuntos
Autoimunidade , Regulação da Expressão Gênica , Antígenos HLA-D/biossíntese , Antígenos HLA-D/genética , Polimorfismo Genético , Células Dendríticas/química , Europa (Continente) , Grupo com Ancestrais do Continente Europeu , Humanos , Lúpus Eritematoso Sistêmico/patologia , Proteínas de Membrana/análise , Estados Unidos
13.
Ann Rheum Dis ; 75(11): 2007-2013, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26783109

RESUMO

OBJECTIVES: Following up the systemic lupus erythematosus (SLE) genome-wide association studies (GWAS) identification of NMNAT2 at rs2022013, we fine-mapped its 150 kb flanking regions containing NMNAT2 and SMG7 in a 15 292 case-control multi-ancestry population and tested functions of identified variants. METHODS: We performed genotyping using custom array, imputation by IMPUTE 2.1.2 and allele specific functions using quantitative real-time PCR and luciferase reporter transfections. SLE peripheral blood mononuclear cells (PBMCs) were cultured with small interfering RNAs to measure antinuclear antibody (ANA) and cyto/chemokine levels in supernatants using ELISA. RESULTS: We confirmed association at NMNAT2 in European American (EA) and Amerindian/Hispanic ancestries, and identified independent signal at SMG7 tagged by rs2702178 in EA only (p=2.4×10-8, OR=1.23 (95% CI 1.14 to 1.32)). In complete linkage disequilibrium with rs2702178, rs2275675 in the promoter region robustly associated with SMG7 mRNA levels in multiple expression quantitative trait locus (eQTL) datasets. Its risk allele was dose-dependently associated with decreased SMG7 mRNA levels in PBMCs of 86 patients with SLE and 119 controls (p=1.1×10-3 and 6.8×10-8, respectively) and conferred reduced transcription activity in transfected HEK-293 (human embryonic kidney cell line) and Raji cells (p=0.0035 and 0.0037, respectively). As a critical component in the nonsense-mediated mRNA decay pathway, SMG7 could regulate autoantigens including ribonucleoprotein (RNP) and Smith (Sm). We showed SMG7 mRNA levels in PBMCs correlated inversely with ANA titres of patients with SLE (r=-0.31, p=0.01), and SMG7 knockdown increased levels of ANA IgG and chemokine (C-C motif) ligand 19 in SLE PBMCs (p=2.0×10-5 and 2.0×10-4, respectively). CONCLUSION: We confirmed NMNAT2 and identified independent SMG7 association with SLE. The inverse relationship between levels of the risk allele-associated SMG7 mRNAs and ANA suggested the novel contribution of mRNA surveillance pathway to SLE pathogenesis.


Assuntos
Anticorpos Antinucleares/metabolismo , Proteínas de Transporte/genética , Leucócitos Mononucleares/imunologia , Lúpus Eritematoso Sistêmico/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Alelos , Grupo com Ancestrais Nativos do Continente Americano/genética , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Células HEK293 , Hispano-Americanos/genética , Humanos , Desequilíbrio de Ligação , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Linhagem , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco
14.
Arthritis Rheumatol ; 68(4): 932-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26606652

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a strong genetic component. We undertook the present work to perform the first genome-wide association study on individuals from the Americas who are enriched for Native American heritage. METHODS: We analyzed 3,710 individuals from the US and 4 countries of Latin America who were diagnosed as having SLE, and healthy controls. Samples were genotyped with HumanOmni1 BeadChip. Data on out-of-study controls genotyped with HumanOmni2.5 were also included. Statistical analyses were performed using SNPtest and SNPGWA. Data were adjusted for genomic control and false discovery rate. Imputation was performed using Impute2 and, for classic HLA alleles, HiBag. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. RESULTS: The IRF5-TNPO3 region showed the strongest association and largest OR for SLE (rs10488631: genomic control-adjusted P [Pgcadj ] = 2.61 × 10(-29), OR 2.12 [95% CI 1.88-2.39]), followed by HLA class II on the DQA2-DQB1 loci (rs9275572: Pgcadj = 1.11 × 10(-16), OR 1.62 [95% CI 1.46-1.80] and rs9271366: Pgcadj = 6.46 × 10(-12), OR 2.06 [95% CI 1.71-2.50]). Other known SLE loci found to be associated in this population were ITGAM, STAT4, TNIP1, NCF2, and IRAK1. We identified a novel locus on 10q24.33 (rs4917385: Pgcadj = 1.39 × 10(-8)) with an expression quantitative trait locus (eQTL) effect (Peqtl = 8.0 × 10(-37) at USMG5/miR1307), and several new suggestive loci. SLE risk loci previously identified in Europeans and Asians were corroborated. Local ancestry estimation showed that the HLA allele risk contribution is of European ancestral origin. Imputation of HLA alleles suggested that autochthonous Native American haplotypes provide protection against development of SLE. CONCLUSION: Our results demonstrate that studying admixed populations provides new insights in the delineation of the genetic architecture that underlies autoimmune and complex diseases.


Assuntos
Grupo com Ancestrais Nativos do Continente Americano/genética , Lúpus Eritematoso Sistêmico/genética , Argentina , Antígeno CD11b/genética , Estudos de Casos e Controles , Chile , Cromossomos Humanos Par 10/genética , Proteínas de Ligação a DNA/genética , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/genética , Cadeias beta de HLA-DQ/genética , Haplótipos , Humanos , Fatores Reguladores de Interferon , Quinases Associadas a Receptores de Interleucina-1/genética , Masculino , México , ATPases Mitocondriais Próton-Translocadoras/genética , NADPH Oxidases/genética , Razão de Chances , Peru , Análise de Componente Principal , Fator de Transcrição STAT4/genética , Estados Unidos , beta Carioferinas
15.
Arthritis Rheumatol ; 68(5): 1197-1209, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26663301

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder whose etiology is incompletely understood, but likely involves environmental triggers in genetically susceptible individuals. Using an unbiased genome-wide association (GWA) scan and replication analysis, we sought to identify the genetic loci associated with SLE in a Korean population. METHODS: A total of 1,174 SLE cases and 4,246 population controls from Korea were genotyped and analyzed with a GWA scan to identify single-nucleotide polymorphisms (SNPs) significantly associated with SLE, after strict quality control measures were applied. For select variants, replication of SLE risk loci was tested in an independent data set of 1,416 SLE cases and 1,145 population controls from Korea and China. RESULTS: Eleven regions outside the HLA exceeded the genome-wide significance level (P = 5 × 10(-8) ). A novel SNP-SLE association was identified between FCHSD2 and P2RY2, peaking at rs11235667 (P = 1.03 × 10(-8) , odds ratio [OR] 0.59) on a 33-kb haplotype upstream of ATG16L2. In the independent replication data set, the SNP rs11235667 continued to show a significant association with SLE (replication meta-analysis P = 0.001, overall meta-analysis P = 6.67 × 10(-11) ; OR 0.63). Within the HLA region, the SNP-SLE association peaked in the class II region at rs116727542, with multiple independent effects observed in this region. Classic HLA allele imputation analysis identified HLA-DRB1*1501 and HLA-DQB1*0602, each highly correlated with one another, as most strongly associated with SLE. Ten previously established SLE risk loci were replicated: STAT1-STAT4, TNFSF4, TNFAIP3, IKZF1, HIP1, IRF5, BLK, WDFY4, ETS1, and IRAK1-MECP2. Of these loci, previously unreported, independent second risk effects of SNPs in TNFAIP3 and TNFSF4, as well as differences in the association with a putative causal variant in the WDFY4 region, were identified. CONCLUSION: Further studies are needed to identify true SLE risk effects in other loci suggestive of a significant association, and to identify the causal variants in the regions of ATG16L2, FCHSD2, and P2RY2.


Assuntos
Grupo com Ancestrais do Continente Asiático/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas de Transporte/genética , Lúpus Eritematoso Sistêmico/genética , Proteínas de Membrana/genética , Receptores Purinérgicos P2Y2/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Humanos , Ligante OX40/genética , Polimorfismo de Nucleotídeo Único , República da Coreia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
16.
Ann Rheum Dis ; 75(1): 242-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25180293

RESUMO

OBJECTIVES: Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association. METHODS: Genotyped and imputed genetic variants spanning CR2 were assessed for association with SLE in 15 750 case-control subjects from four ancestral groups. Allele-specific functional effects of associated variants were determined using quantitative real-time PCR, quantitative flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR. RESULTS: The strongest association signal was detected at rs1876453 in intron 1 of CR2 (pmeta=4.2×10(-4), OR 0.85), specifically when subjects were stratified based on the presence of dsDNA autoantibodies (case-control pmeta=7.6×10(-7), OR 0.71; case-only pmeta=1.9×10(-4), OR 0.75). Although allele-specific effects on B cell CR2 mRNA or protein levels were not identified, levels of complement receptor 1 (CR1/CD35) mRNA and protein were significantly higher on B cells of subjects harbouring the minor allele (p=0.0248 and p=0.0006, respectively). The minor allele altered the formation of several DNA protein complexes by EMSA, including one containing CCCTC-binding factor (CTCF), an effect that was confirmed by ChIP-PCR. CONCLUSIONS: These data suggest that rs1876453 in CR2 has long-range effects on gene regulation that decrease susceptibility to lupus. Since the minor allele at rs1876453 is preferentially associated with reduced risk of the highly specific dsDNA autoantibodies that are present in preclinical, active and severe lupus, understanding its mechanisms will have important therapeutic implications.


Assuntos
Anticorpos Antinucleares/sangue , Lúpus Eritematoso Sistêmico/genética , Receptores de Complemento 3d/genética , Adolescente , Adulto , Subpopulações de Linfócitos B/imunologia , Estudos de Casos e Controles , DNA/imunologia , Predisposição Genética para Doença , Variação Genética , Genótipo , Haplótipos , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Complemento 3b/biossíntese , Medição de Risco/métodos , Fatores de Transcrição/metabolismo , Adulto Jovem
17.
Cell Mol Immunol ; 13(1): 119-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25640655

RESUMO

Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window.


Assuntos
Antígenos CD40/metabolismo , Interleucina-4/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Regiões Promotoras Genéticas , Receptores de Complemento 3d/metabolismo , Sítio de Iniciação de Transcrição , Sequência de Bases , Antígenos CD40/genética , Antígenos CD40/imunologia , Diferenciação Celular , Linhagem Celular Tumoral , Éxons , Regulação da Expressão Gênica , Humanos , Interleucina-4/genética , Interleucina-4/imunologia , Íntrons , Células K562 , Dados de Sequência Molecular , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/imunologia , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/imunologia , Transdução de Sinais , Transcrição Genética
18.
Clin Immunol ; 161(2): 157-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26385092

RESUMO

Leptin is abnormally elevated in the plasma of patients with systemic lupus erythematosus (SLE), where it is thought to promote and/or sustain pro-inflammatory responses. Whether this association could reflect an increased genetic susceptibility to develop SLE is not known, and studies of genetic associations with leptin-related polymorphisms in SLE patients have been so far inconclusive. Here we genotyped DNA samples from 15,706 SLE patients and healthy matched controls from four different ancestral groups, to correlate polymorphisms of genes of the leptin pathway to risk for SLE. It was found that although several SNPs showed weak associations, those associations did not remain significant after correction for multiple testing. These data do not support associations between defined leptin-related polymorphisms and increased susceptibility to develop SLE.


Assuntos
Predisposição Genética para Doença/genética , Leptina/genética , Lúpus Eritematoso Sistêmico/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , Genótipo , Humanos
19.
Am J Hum Genet ; 96(5): 731-9, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25865496

RESUMO

Genetic variants at chromosomal region 11q23.3, near the gene ETS1, have been associated with systemic lupus erythematosus (SLE), or lupus, in independent cohorts of Asian ancestry. Several recent studies have implicated ETS1 as a critical driver of immune cell function and differentiation, and mice deficient in ETS1 develop an SLE-like autoimmunity. We performed a fine-mapping study of 14,551 subjects from multi-ancestral cohorts by starting with genotyped variants and imputing to all common variants spanning ETS1. By constructing genetic models via frequentist and Bayesian association methods, we identified 16 variants that are statistically likely to be causal. We functionally assessed each of these variants on the basis of their likelihood of affecting transcription factor binding, miRNA binding, or chromatin state. Of the four variants that we experimentally examined, only rs6590330 differentially binds lysate from B cells. Using mass spectrometry, we found more binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to DNA near the risk allele of rs6590330 than near the non-risk allele. Immunoblot analysis and chromatin immunoprecipitation of pSTAT1 in B cells heterozygous for rs6590330 confirmed that the risk allele increased binding to the active form of STAT1. Analysis with expression quantitative trait loci indicated that the risk allele of rs6590330 is associated with decreased ETS1 expression in Han Chinese, but not other ancestral cohorts. We propose a model in which the risk allele of rs6590330 is associated with decreased ETS1 expression and increases SLE risk by enhancing the binding of pSTAT1.


Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Proteína Proto-Oncogênica c-ets-1/genética , Fator de Transcrição STAT1/genética , Alelos , Animais , Grupo com Ancestrais do Continente Asiático , Teorema de Bayes , Genótipo , Haplótipos , Humanos , Camundongos , Ligação Proteica , Proteína Proto-Oncogênica c-ets-1/metabolismo , Fator de Transcrição STAT1/metabolismo
20.
Clin Rheumatol ; 34(1): 71-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25344775

RESUMO

The identification of biomarkers helps to perform early diagnosis, thus benefits the outcome of patients with systemic lupus erythematosus (SLE), in which delayed treatment has been proposed as an independent adverse prognostic factor. In this study, we assessed the values of expression levels of five type I interferon (IFN)-inducible genes (LY6E, OAS1, OASL, MX1, and ISG15) and total IFN score for the diagnosis of SLE. Quantitative real-time PCR was applied to determine gene expressions at transcription level in peripheral blood from 69 SLE patients, 42 patients with other connective tissue diseases, and 26 normal controls. Expressions of five genes and IFN score, calculated according to the expressions of IFN-inducible genes, were all significantly increased in SLE patients compared to those in normal subjects and disease controls. IFN score was not related to age, gender, and the dose of steroids, but weakly correlated with SLE disease activity index. None of the gene expression was associated with concomitant infection status or elevated antibodies against Epstein-Barr (EB) virus in SLE. Both modified IFN score (calculated by the expression of three major IFN-inducible genes) and LY6E level showed good diagnostic accuracy in discriminating between SLE patients and disease controls as well as normal subjects (area under the receiver operating characteristic curve was 0.812 and 0.815, respectively), with 70-80 % specificity and 70-80 % sensitivity at the cutoff of 2.37 and 3.23. In conclusion, high IFN-inducible gene expression is constitutional for SLE patients. The modified IFN score or the LY6E level alone may serve as good biomarkers for SLE diagnosis.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Antígenos de Superfície/genética , Citocinas/genética , Lúpus Eritematoso Sistêmico/diagnóstico , Proteínas de Resistência a Myxovirus/genética , Ubiquitinas/genética , Adolescente , Adulto , Idoso , Biomarcadores , Feminino , Proteínas Ligadas por GPI/genética , Expressão Gênica , Humanos , Lúpus Eritematoso Sistêmico/genética , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA