Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(14): 5563-5568, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32564599

RESUMO

Recent studies have shown that charge transport interlayers with low gas permeability can increase the operational lifetime of perovskite solar cells serving as a barrier for migration of volatile decomposition products from the photoactive layer. Herein we present a hybrid hole transport layer (HTL) comprised of p-type polytriarylamine (PTAA) polymer and vanadium(V) oxide (VOx). Devices with PTAA/VOx top HTL reach up to 20% efficiency and demonstrate negligible degradation after 4500 h of light soaking, whereas reference cells using PTAA/MoOx as HTL lose ∼50% of their initial efficiency under the same aging conditions. It was shown that the main origin of the enhanced device stability lies in the higher tolerance of VOx toward MAPbI3 compared to the MoOx interlayer, which tends to facilitate perovskite decomposition. Our results demonstrate that the application of PTAA/VOx hybrid HTL enables long-term operational stability of perovskite solar cells, thus bringing them closer to commercial applications.

2.
ACS Appl Mater Interfaces ; 12(16): 19161-19173, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233360

RESUMO

We investigated the impact of a series of hole transport layer (HTL) materials such as Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), NiOx, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), and polytriarylamine (PTA) on photostability of thin films and solar cells based on MAPbI3, Cs0.15FA0.85PbI3, Cs0.1MA0.15FA0.75PbI3, Cs0.1MA0.15FA0.75Pb(Br0.15I0.85)3, and Cs0.15FA0.85Pb(Br0.15I0.85)3 complex lead halides. Mixed halide perovskites showed reduced photostability in comparison with similar iodide-only compositions. In particular, we observed light-induced recrystallization of all perovskite films except MAPbI3 with the strongest effects revealed for Br-containing systems. Moreover, halide and ß FAPbI3 phase segregations were also observed mostly in mixed-halide systems. Interestingly, coating perovskite films with the PCBM layer spectacularly suppressed light-induced growth of crystalline domains as well as segregation of Br-rich and I-rich phases or ß FAPbI3. We strongly believe that all three effects are promoted by the light-induced formation of surface defects, which are healed by adjacent PCBM coating. While comparing different hole-transport materials, we found that NiOx and PEDOT:PSS are the least suitable HTLs because of their interfacial (photo)chemical interactions with perovskite absorbers. On the contrary, polyarylamine-type HTLs PTA and PTAA form rather stable interfaces, which makes them the best candidates for durable p-i-n perovskite solar cells. Indeed, multilayered ITO/PTA(A)/MAPbI3/PCBM stacks revealed no aging effects within 1000 h of continuous light soaking and delivered stable and high power conversion efficiencies in solar cells. The obtained results suggest that using polyarylamine-type HTLs and simple single-phase perovskite compositions pave a way for designing stable and efficient perovskite solar cells.

3.
J Phys Chem Lett ; 11(1): 333-339, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838849

RESUMO

We report the first systematic assessment of intrinsic photothermal stability of a large panel of complex lead halides APbX3 incorporating different univalent cations (A = CH3NH3+, [NH2CHNH2]+, Cs+) and halogen anions (X = Br, I) using a series of analytical techniques such as UV-vis and X-ray photoelectron spectroscopy, X-ray diffraction, EDX analysis, atomic force and scanning electron microscopy, ESR spectroscopy, and mass spectrometry. We show that heat stress and light soaking induce a severe degradation of perovskite films even in the absence of oxygen and moisture. The stability of complex lead halides increases in the order MAPbBr3 < MAPbI3 < FAPbI3 < FAPbBr3 < CsPbI3 < CsPbBr3, thus featuring all-inorganic perovskites as the most promising absorbers for stable perovskite solar cells. An important correlation was found between the stability of the complex lead halides and the volatility of univalent cation halides incorporated in their structure. The established relationship provides useful guidelines for designing new complex metal halides with immensely improved stability.

4.
ACS Appl Mater Interfaces ; 11(24): 21741-21748, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31091872

RESUMO

We explored the radiation stability of carbazole-based electron-donor conjugated polymers, acceptor fullerene derivative [60]PCBM, and their blends as active layer components of organic solar cells. An exposure to Î³ rays induced evident degradation effects in bulk samples of the pristine fullerene acceptor ([60]PCBM) and two investigated electron-donor conjugated polymers: PCDTBT and PCDTTBTBTT. The most severe radiation damage occurred in [60]PCBM as can be concluded from the significant losses in open circuit voltage, fill factor, and efficiency of photovoltaic (PV) devices comprising the exposed fullerene acceptor. Conjugated polymers PCDTBT and PCDTTBTBTT showed substantially different radiation stabilities: the samples of PCDTTBTBTT exposed to 200 Gy lost ∼25% of their nominal photovoltaic efficiency due to a substantial decay of all device parameters, while PCDTBT alone showed just a minor aging under the same conditions. The fullerene-polymer composites were much more resistant with respect to the radiation damage than the bulk samples of pristine materials. In particular, the PCDTBT/[60]PCBM composite films demonstrated an outstanding radiation stability while maintaining more than 80% of the initial photovoltaic efficiency after exposure to γ rays with a maximum absorbed dose of 6500 Gy. Considering an average annual radiation dose of 160 Gy according to the NASA estimations for satellites at geocentric Earth orbits, organic solar cells based on PCDTBT/[60]PCBM blends hold a promise to deliver lifetimes well above 10 years. The revealed impressive radiation stability of PCDTBT/[60]PCBM blends in combination with other advantages of organic solar cells, for example, their mechanical flexibility and lightweight, points to a bright future of this PV technology in space industry applications.

5.
Environ Sci Technol ; 53(5): 2739-2747, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30758954

RESUMO

Unacceptably high uranium concentrations in decentralized and remote potable groundwater resources, especially those of high hardness (e.g ., high Ca2+, Mg2+, and CO32- concentrations), are a common worldwide problem. The complexation of alkali earth metals, carbonate, and uranium(VI) results in the formation of thermodynamically stable ternary aqueous species that are predominantly neutrally charged (e.g ., Ca2(UO2)(CO3)30). The removal of the uncharged (nonadsorbing) complexes is a problematic issue for many water treatment technologies. As such, we have evaluated the efficacy of a recently developed electrochemical technology, termed flow-electrode capacitive deionization (FCDI), to treat a synthetic groundwater, the composition of which is comparable to groundwater resources in the Northern Territory, Australia (and elsewhere worldwide). Theoretical calculations and time-resolved laser fluorescence spectroscopy analyses confirmed that Ca2(UO2)(CO3)30 was the primary aqueous species followed by Ca(UO2)(CO3)32- (at circumneutral pH values). Results under different operating conditions demonstrated that FCDI is versatile in reducing uranium concentrations to <10 µg L-1 with low electrical consumption (e.g ., ∼0.1 kWh m-3). It is concluded that the capability of FCDI to remove uranium under these common conditions depends on the dissociation kinetics of the Ca2(UO2)(CO3)30 complex in the electrical field. The subsequent formation of the negatively charged Ca(UO2)(CO3)32- species results in the efficient transport of uranium across the anion exchange membrane followed by immobilization on the positively charged flow (anode) electrode.


Assuntos
Água Subterrânea , Urânio , Adsorção , Austrália , Eletrodos
6.
J Phys Chem Lett ; 10(4): 813-818, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30621392

RESUMO

We report on the impact of γ radiation (0-500 Gy) on triple-cation Cs0.15MA0.10FA0.75Pb(Br0.17I0.83)3 perovskite solar cells. A set of experiments was designed to reveal the individual contributions of the hole-collecting bottom electrode, perovskite absorber, and electron transport layer (ETL) to the overall solar cell degradation under radiation exposure. We show that the glass/ITO/PEDOT:PSS hole-collecting electrode withstands a 500 Gy dose without any losses in the solar cell performance. In contrast, the perovskite absorber films and PC61BM ETL are very sensitive to γ rays, as can be concluded from the radiation-induced decay of the solar cell efficiency by ∼32-41%. Red shift of the perovskite emission bands and strong enhancement of the photoluminescence suggest that γ rays induce phase segregation of iodine-rich and bromine-rich domains, which represents the first reported example of the radiation-induced halide phase separation in perovskite films. The degradation pathway revealed here emphasizes the need for developing a new generation of metal halide absorbers and ETL materials with improved radiation stability to enable potential space applications of perovskite photovoltaics.

7.
Dalton Trans ; 47(4): 1251-1260, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29299574

RESUMO

Sc2(WO4)3, prepared by solid state synthesis and constructed as an electrode, is discharged to different states in half-cell batteries, versus a Na negative electrode. The structural evolution of the Na-containing electrodes is studied with synchrotron powder X-ray diffraction (PXRD) revealing an increase in microstrain and a gradual amorphization taking place with increasing Na content in the electrode. This indicates that a conversion reaction takes place in the electrochemical cell. X-ray absorption spectroscopy (XAS) at the tungsten L3 absorption edge shows a reduction in the tungsten oxidation state. Variable temperature (VT) PXRD shows that the Sc2(WO4)3 electrode remains relatively stable at higher temperatures, while the Na-containing samples undergo a number of phase transitions and/or turn amorphous above ∼400 °C. Although, Sc2(WO4)3 is a negative thermal expansion (NTE) material only a subtle change of the thermal expansion is found below 400 °C for the Na-containing electrodes. This work shows the complexity in employing an electrochemical cell to produce Na-containing Sc2(WO4)3 and the subsequent phase transitions.

8.
Environ Sci Technol ; 50(15): 8223-30, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27379383

RESUMO

Uranium(VI) interactions with three smectites (one montmorillonite and two nontronites - NAu1 and NAu2) were examined with 0, 1, and 2 mM aqueous concentrations of Fe(II) over the pH range of 3-9.5 in a background electrolyte of 100 mM NaCl and 1 mM CaCl2 in equilibration with 400 ppmv CO2(g) ([U(VI)] = 4 µM and 0.5 g smectite/L). In the absence of Fe(II), no differences were observed in the U(VI) sorption curves for the three clay minerals. In the presence of 1 or 2 mM Fe(II), under anoxic conditions, U(VI) uptake by the smectites changed slightly between ∼pH 3 and 6; however, uranium uptake increased significantly above ∼pH 6 and was proportional to the concentration of Fe(II) added to the system, particularly at pH values >8. The uptake of Fe(II) showed a sharp edge starting from ∼pH 6.5 with 95%-100% uptake occurring at pH values >7.5, with no difference observed between the iron-rich nontronites and montmorillonite. After 3 days of reaction at pH 7.6 (i.e., above the Fe(II) "sorption" edge), U(VI) was transformed to a mixture of U(IV) and U(VI) sorption complexes, and after 14 days of reaction, 100% of the U was found to be reduced to U(IV) in the form of nanocrystalline uraninite. In contrast, U remained as sorbed species until 14 days of reaction at pH 6.5. Ferrihydrite (NAu1), lepidocrocite, and magnetite (NAu2) were detected as secondary mineralization products upon reaction of the nontronites with Fe(II) but appeared to have no effect on the partitioning or speciation of uranium.


Assuntos
Bentonita , Urânio/química , Compostos Ferrosos/química , Ferro/química , Oxirredução
9.
Environ Sci Technol ; 50(5): 2595-601, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26840619

RESUMO

Nanoscale zerovalent iron (nZVI) has shown potential to be an effective remediation agent for uranium-contaminated subsurface environments, however, the nature of the reaction products and their formation kinetics have not been fully elucidated over a range of environmentally relevant conditions. In this study, the oxygen-free reaction of U(VI) with varying quantities of nZVI was examined at pH 7 in the presence of both calcium and carbonate using a combination of X-ray absorption spectroscopy, X-ray diffraction and transmission electron microscopy. It was observed that the structure of the reduced U solid phases was time dependent and largely influenced by the ratio of nZVI to U in the system. At the highest U:Fe molar ratio examined (1:4), nanoscale uraninite (UO2) was predominantly formed within 1 day of reaction. At lower U:Fe molar ratios (1:21), evidence was obtained for the formation of sorbed U(IV) and U(V) surface complexes which slowly transformed to UO2 nanoparticles that were stable for up to 1 year of anaerobic incubation. After 8 days of reaction at the lowest U:Fe molar ratio examined (1:110), sorbed U(IV) was still the major form of U associated with the solid phase. Regardless of the U:Fe molar ratio, the anaerobic corrosion of nZVI resulted in the slow formation of micron-sized fibrous chukanovite (Fe2(OH)2CO3) particles.


Assuntos
Ferro/química , Nanopartículas/química , Urânio/química , Anaerobiose , Carbonatos/química , Cristalografia por Raios X , Meio Ambiente , Análise dos Mínimos Quadrados , Nanopartículas/ultraestrutura , Dinâmica não Linear , Oxirredução , Urânio/isolamento & purificação , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...