Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32159970

RESUMO

Idiopathic pulmonary fibrosis (IPF) results in scarring of the lungs by excessive extracellular matrix (ECM) production. Resident fibroblasts are the major cell type involved in ECM deposition. The biochemical pathways that facilitate pathological fibroblast activation leading to aberrant ECM deposition are not fully understood. Tank Binding Protein Kinase-1 (TBK1), is a kinase that regulates multiple signaling pathways, and was recently identified as a candidate regulator of fibroblast activation in a large-scale siRNA screen. In order to determine the effect of TBK1 on fibroblast activation, TBK1 was inhibited pharmacologically (MRT68601) and genetically (siRNA) in normal and IPF human lung fibroblasts. Reducing the activity or expression of TBK1 led to reduction in α-SMA stress fiber levels by 40-60% and deposition of ECM components collagen I and fibronectin by 50% in TGF-ß stimulated normal and IPF fibroblasts. YAP and TAZ are homologous mechanoregulatory, profibrotic transcription co-factors known to regulate fibroblast activation. TBK1 knockdown or inhibition decreased the total and nuclear protein levels of YAP/TAZ. Additionally, low cell-cell contact and increased ECM substrate stiffness augmented the phosphorylation and activation of TBK1, consistent with cues that regulate YAP/TAZ. The action of TBK1 towards YAP/TAZ activation was independent of LATS1/2 and canonical downstream TBK1 signaling mediator IRF3, but dependent on proteasomal machinery of the cell. This study identifies TBK1 as a fibrogenic activator of human pulmonary fibroblasts, suggesting TBK1 may be a novel therapeutic target in pulmonary fibrosis.

2.
Trends Pharmacol Sci ; 41(3): 172-182, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32008852

RESUMO

A variety of G protein-coupled receptors (GPCRs) have been implicated in the pathogenesis of pulmonary fibrosis, largely through their promotion of profibrotic fibroblast activation. By contrast, recent work has highlighted the beneficial effects of Gαs-coupled GPCRs on reducing fibroblast activation and fibrosis. This review highlights how fibrosis-promoting and -inhibiting GPCR signaling converges on downstream signaling and transcriptional effectors, and how the diversity and dynamics of GPCR expression challenge efforts to identify effective therapies for idiopathic pulmonary fibrosis (IPF). Next-generation strategies to overcome these challenges, focusing on target selection, polypharmacology, and personalized medicine approaches, are discussed as a path towards more effective GPCR-targeted therapies for pulmonary fibrosis.

3.
Reprod Sci ; 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32056132

RESUMO

Uterine fibroids (UFs) are benign myometrial neoplasms. The mechanical environment activates signaling through the Hippo pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding domain (TAZ) in other fibrotic disorders. Here, we assess the differences in YAP/TAZ responsiveness to signals in UF compared with myometrium (Myo). Matched samples of UF and Myo were collected. Atomic force microscopy (AFM) was used to determine in situ stiffness. Cells were plated sparsely on hydrogels or at confluence. Ten nanomolars of estradiol (E2) and 100 nM progesterone (P4) were used. Immunostaining for YAP/TAZ and extracellular matrix (ECM) proteins was performed. Cells were incubated with control or YAP1 (YAP)/WWTR1 (TAZ) small interfering RNA (siRNA). Real time qPCR was completed for connective tissue growth factor (CTGF). Cells were treated with verteporfin (a YAP inhibitor) or Y27632 (a ROCK inhibitor), and ECM gene expression was analyzed. Paired t test and Wilcoxon sign-rank test were used. AFM-measured tissue stiffness and YAP/TAZ nuclear localization in situ and in confluent cells were higher in UF compared with Myo (p < 0.05). Decreasing substrate stiffness reduced YAP/TAZ nuclear localization for both Myo and UF (p = 0.05). Stimulating cells with E2 or P4 increased YAP/TAZ nuclear localization, but only in Myo (p = 0.01). UFs had increased FN, COLI, and COLIII deposition. Following siRNA targeting, CTGF was found to be statistically decreased. Verteporfin treatment reduced cell survival and reduced FN deposition. Treatment with Y27632 demonstrated better cell tolerance and a reduction in ECM deposition. The mechanosensitive pathway may be linked to YAP/TAZ function and involved in transducing fibroid growth.

4.
J Neurotrauma ; 37(3): 494-506, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31516087

RESUMO

Gliosis and fibrosis after spinal cord injury (SCI) lead to formation of a scar that is thought to present both molecular and mechanical barriers to neuronal regeneration. The scar consists of a meshwork of reactive glia and deposited, cross-linked, extracellular matrix (ECM) that has long been assumed to present a mechanically "stiff" blockade. However, remarkably little quantitative information is available about the rheological properties of chronically injured spinal tissue. In this study we utilize atomic force microscopy microindentation to provide quantitative evidence of chronic mechanical stiffening after SCI. Using the results of this tissue characterization, we assessed the sensitivity of both mouse and human astrocytes in vitro and determined that they are exquisitely mechanosensitive within the relevant range of substrate stiffness observed in the injured/uninjured spinal cord. We then utilized a novel immune modifying nanoparticle (IMP) treatment as a tool to reveal fibrotic scarring as one of the key drivers of mechanical stiffening after SCI in vivo. We also demonstrate that glial scar-forming astrocytes form a highly aligned, anisotropic network of glial fibers after SCI, and that IMP treatment mitigates this pathological alignment. Taken together, our results identify chronic mechanical stiffening as a critically important aspect of the complex lesion milieu after SCI that must be considered when assessing and developing potential clinical interventions for SCI.

5.
Respir Res ; 20(1): 281, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31829168

RESUMO

BACKGROUND: Fibroblasts regulate tissue homeostasis and the balance between tissue repair and fibrosis. CCAAT/enhancer-binding protein alpha (CEBPA) is a key transcription factor that regulates adipogenesis. CEBPA has been shown to be essential for lung maturation, and deficiency of CEBPA expression leads to abnormal lung architecture. However, its specific role in lung fibroblast regulation and fibrosis has not yet been elucidated. METHODS: Lung fibroblast CEBPA expression, pro-fibrotic and lipofibroblast gene expression were assessed by qRT-PCR. CEBPA gain and loss of function experiments were carried out to evaluate the role of CEBPA in human lung fibroblast activation with and without TGF-ß1 treatment. Adipogenesis assay was used to measure the adiopogenic potential of lung fibroblasts. Finally, CRISPR activation system was used to enhance endogenous CEBPA expression. RESULTS: We found that CEBPA gene expression is significantly decreased in IPF-derived fibroblasts compared to normal lung fibroblasts. CEBPA knockdown in normal human lung fibroblasts enhanced fibroblast pro-fibrotic activation and ECM production. CEBPA over-expression by transient transfection in IPF-derived fibroblasts significantly reduced pro-fibrotic gene expression, ECM deposition and αSMA expression and promoted the formation of lipid droplets measured by Oil Red O staining and increased lipofibroblast gene expression. Inhibition of the histone methyl transferase G9a enhanced CEBPA expression, and the anti-fibrotic effects of G9a inhibition were partially mediated by CEBPA expression. Finally, targeted CRISPR-mediated activation of CEBPA resulted in fibroblasts switching from fibrogenic to lipofibroblast states. CONCLUSIONS: CEBPA expression is reduced in human IPF fibroblasts and its deficiency reduces adipogenic potential and promotes fibrogenic activation. CEBPA expression can be rescued via an inhibitor of epigenetic repression or by targeted CRISPR activation, leading to reduced fibrogenic activation.

6.
Sci Transl Med ; 11(516)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666402

RESUMO

Tissue fibrosis is characterized by uncontrolled deposition and diminished clearance of fibrous connective tissue proteins, ultimately leading to organ scarring. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) have recently emerged as pivotal drivers of mesenchymal cell activation in human fibrosis. Therapeutic strategies inhibiting YAP and TAZ have been hindered by the critical role that these proteins play in regeneration and homeostasis in different cell types. Here, we find that the Gαs-coupled dopamine receptor D1 (DRD1) is preferentially expressed in lung and liver mesenchymal cells relative to other resident cells of these organs. Agonism of DRD1 selectively inhibits YAP/TAZ function in mesenchymal cells and shifts their phenotype from profibrotic to fibrosis resolving, reversing in vitro extracellular matrix stiffening and in vivo tissue fibrosis in mouse models. Aromatic l-amino acid decarboxylase [DOPA decarboxylase (DDC)], the enzyme responsible for the final step in biosynthesis of dopamine, is decreased in the lungs of subjects with idiopathic pulmonary fibrosis, and its expression inversely correlates with disease severity, consistent with an endogenous protective role for dopamine signaling that is lost in pulmonary fibrosis. Together, these findings establish a pharmacologically tractable and cell-selective approach to targeting YAP/TAZ via DRD1 that reverses fibrosis in mice.

7.
Gut ; 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757880

RESUMO

OBJECTIVE: This study was designed to evaluate the roles of microRNAs (miRNAs) in slow transit constipation (STC). DESIGN: All human tissue samples were from the muscularis externa of the colon. Expression of 372 miRNAs was examined in a discovery cohort of four patients with STC versus three age/sex-matched controls by a quantitative PCR array. Upregulated miRNAs were examined by quantitative reverse transcription qPCR (RT-qPCR) in a validation cohort of seven patients with STC and age/sex-matched controls. The effect of a highly differentially expressed miRNA on a custom human smooth muscle cell line was examined in vitro by RT-qPCR, electrophysiology, traction force microscopy, and ex vivo by lentiviral transduction in rat muscularis externa organotypic cultures. RESULTS: The expression of 13 miRNAs was increased in STC samples. Of those miRNAs, four were predicted to target SCN5A, the gene that encodes the Na+ channel NaV1.5. The expression of SCN5A mRNA was decreased in STC samples. Let-7f significantly decreased Na+ current density in vitro in human smooth muscle cells. In rat muscularis externa organotypic cultures, overexpression of let-7f resulted in reduced frequency and amplitude of contraction. CONCLUSIONS: A small group of miRNAs is upregulated in STC, and many of these miRNAs target the SCN5A-encoded Na+ channel NaV1.5. Within this set, a novel NaV1.5 regulator, let-7f, resulted in decreased NaV1.5 expression, current density and reduced motility of GI smooth muscle. These results suggest NaV1.5 and miRNAs as novel diagnostic and potential therapeutic targets in STC.

8.
Thromb Haemost ; 119(12): 1968-1980, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31705517

RESUMO

INTRODUCTION: Impaired plasminogen activation (PA) is causally related to the development of lung fibrosis. Prior studies demonstrate that enhanced PA in the lung limits the severity of scarring following injury and in vitro studies indicate that PA promotes matrix degradation and fibroblast apoptosis. These findings led us to hypothesize that increased PA in an in vivo model would enhance the resolution of established lung fibrosis in conjunction with increased myofibroblast apoptosis. METHODS: Transgenic C57BL/6 mice with doxycycline inducible lung-specific urokinase plasminogen activator (uPA) expression or littermate controls were treated (day 0) with bleomycin or saline. Doxycycline was initiated on days 1, 9, 14, or 21. Lung fibrosis, stiffness, apoptosis, epithelial barrier integrity, and inflammation were assessed. RESULTS: Protection from fibrosis with uPA upregulation from day 1 through day 28 was associated with reduced parenchymal stiffness as determined by atomic force microscopy. Initiation of uPA expression beginning in the late inflammatory or the early fibrotic phase reduced stiffness and fibrosis at day 28. Induction of uPA activity in mice with established fibrosis decreased lung collagen and lung stiffness while increasing myofibroblast apoptosis. Upregulation of uPA did not alter lung inflammation but was associated with improved epithelial cell homeostasis. CONCLUSION: Restoring intrapulmonary PA activity diminishes lung fibrogenesis and enhances the resolution of established lung fibrosis. This PA-mediated resolution is associated with increased myofibroblast apoptosis and improved epithelial cell homeostasis. These studies support the potential capacity of the lung to resolve existing scar in murine models.

9.
J Cell Sci ; 132(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31527052

RESUMO

Tissue fibrosis is a chronic disease driven by persistent fibroblast activation that has recently been linked to epigenetic modifications. Here, we screened a small library of epigenetic small-molecule modulators to identify compounds capable of inhibiting or reversing TGFß-mediated fibroblast activation. We identified pracinostat, an HDAC inhibitor, as a potent attenuator of lung fibroblast activation and confirmed its efficacy in patient-derived fibroblasts isolated from fibrotic lung tissue. Mechanistically, we found that HDAC-dependent transcriptional repression was an early and essential event in TGFß-mediated fibroblast activation. Treatment of lung fibroblasts with pracinostat broadly attenuated TGFß-mediated epigenetic repression and promoted fibroblast quiescence. We confirmed a specific role for HDAC-dependent histone deacetylation in the promoter region of the anti-fibrotic gene PPARGC1A (PGC1α) in response to TGFß stimulation. Finally, we identified HDAC7 as a key factor whose siRNA-mediated knockdown attenuates fibroblast activation without altering global histone acetylation. Together, these results provide novel mechanistic insight into the essential role HDACs play in TGFß-mediated fibroblast activation via targeted gene repression.

10.
Thorax ; 74(8): 749-760, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31182654

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal ageing-related disease linked to mitochondrial dysfunction. The present study aimed to determine whether peroxisome proliferator activated receptor gamma co-activator 1-alpha (PPARGC1A, encoding PGC1α), a master regulator of mitochondrial biogenesis, is diminished in IPF and controls pathologic fibroblast activation. Primary human IPF, control lung fibroblasts and fibroblasts sorted from bleomycin-injured mice were used to evaluate the expression and function of PGC1α. In vitro PGC1α manipulation was performed by small interfering RNA knockdown or overexpression. Fibroblast activation was assessed by quantitative PCR, Western blotting, matrix deposition, secreted cytokine array, immunofluorescence and traction force microscopy. Mitochondrial function was assessed by Seahorse analyzer and mitochondria mass and number by flow cytometry, mitochondrial DNA quantification and transmission electron microscopy (TEM). We found that PGC1α levels are stably repressed in IPF fibroblasts. After bleomycin injury in young mice, PGC1α expression drops transiently but then increases prior to fibrosis resolution. In contrast, PGC1α expression fails to recover in aged mice with persistent fibrosis. PGC1α knockdown alone in normal human lung fibroblasts reduces mitochondrial mass and function while enhancing contractile and matrix synthetic fibroblast activation, senescence-related gene expression and soluble profibrotic and prosenescence signalling. Re-expression of PGC1α in IPF fibroblasts ameliorates all of these pathological cellular functions. Pharmacological treatment of IPF fibroblasts with rosiglitazone, but not thyroid hormone, elevated PGC1α expression and attenuated fibroblast activation. The sustained repression of PGC1α and beneficial effects of its rescue in IPF fibroblasts identifies PGC1α as an important regulator of the fibroblast's pathological state in IPF.

11.
JCI Insight ; 52019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31095524

RESUMO

Pulmonary fibrosis is a devastating disease characterized by accumulation of activated fibroblasts and scarring in the lung. While fibroblast activation in physiological wound repair reverses spontaneously, fibroblast activation in fibrosis is aberrantly sustained. Here we identified histone 3 lysine 9 methylation (H3K9me) as a critical epigenetic modification that sustains fibroblast activation by repressing the transcription of genes essential to returning lung fibroblasts to an inactive state. We show that the histone methyltransferase G9a (EHMT2) and chromobox homolog 5 (CBX5, also known as HP1α), which deposit H3K9me marks and assemble an associated repressor complex respectively, are essential to initiation and maintenance of fibroblast activation specifically through epigenetic repression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha gene (PPARGC1A, encoding PGC1α). Both TGFß and increased matrix stiffness potently inhibit PGC1α expression in lung fibroblasts through engagement of the CBX5/G9a pathway. Inhibition of CBX5/G9a pathway in fibroblasts elevates PGC1α, attenuates TGFß- and matrix stiffness-promoted H3K9 methylation, and reduces collagen accumulation in the lungs following bleomycin injury. Our results demonstrate that epigenetic silencing mediated by H3K9 methylation is essential for both biochemical and biomechanical fibroblast activation, and that targeting this epigenetic pathway may provide therapeutic benefit by returning lung fibroblasts to quiescence.

12.
Am J Respir Cell Mol Biol ; 61(5): 607-619, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31050552

RESUMO

Reciprocal epithelial-mesenchymal interactions are pivotal in lung development, homeostasis, injury, and repair. Organoids have been used to investigate such interactions, but with a major focus on epithelial responses to mesenchyme and less attention to epithelial effects on mesenchyme. In the present study, we used nascent organoids composed of human and mouse lung epithelial and mesenchymal cells to demonstrate that healthy lung epithelium dramatically represses transcriptional, contractile, and matrix synthetic functions of lung fibroblasts. Repression of fibroblast activation requires signaling via the bone morphogenetic protein (BMP) pathway. BMP signaling is diminished after epithelial injury in vitro and in vivo, and exogenous BMP4 restores fibroblast repression in injured organoids. In contrast, inhibition of BMP signaling in healthy organoids is sufficient to derepress fibroblast matrix synthetic function. Our results reveal potent repression of fibroblast activation by healthy lung epithelium and a novel mechanism by which epithelial loss or injury is intrinsically coupled to mesenchymal activation via loss of repressive BMP signaling.

13.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L487-L497, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30604628

RESUMO

Interleukin (IL)-17 is a T helper 17 cytokine implicated in the pathogenesis of many autoimmune diseases, including rheumatoid arthritis (RA). Although IL-17A has a well-established role in murine pulmonary fibrosis models, its role in the tissue remodeling and fibrosis occurring in idiopathic pulmonary fibrosis (IPF) and RA-associated interstitial lung disease (RA-ILD) is not very well defined. To address this question, we utilized complimentary studies to determine responsiveness of human normal and pathogenic lung fibroblasts to IL-17A and used lung biopsies acquired from patients with IPF and RA-ILD to determine IL-17A receptor (IL-17RA) expression. Both normal and pathogenic IPF lung fibroblasts express functional IL-17RA and respond to IL-17A stimulation with cell proliferation, generation of extracellular matrix (ECM) proteins, and induction of myofibroblast transdifferentiation. Small interfering RNA (siRNA) silencing of IL-17RA attenuated this fibroblast response to IL-17A on ECM production. These fibroblast responses to IL-17A are dependent on NF-κB-mediated signaling. In addition, inhibiting Janus activated kinase (JAK) 2 by either siRNA or a selective pharmacological inhibitor, AZD1480-but not a JAK1/JAK3 selective inhibitor, tofacitinib-also significantly reduced this IL-17A-induced fibrogenic response. Lung biopsies of RA-ILD patients demonstrate significantly higher IL-17RA expression in areas of fibroblast accumulation and fibrosis, compared with either IPF or normal lung tissue. These observations support a direct role for IL-17A in lung fibrosis that may be particularly relevant in the context of RA-ILD.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Interleucina-17/farmacologia , Receptores de Interleucina-17/efeitos dos fármacos , Artrite Reumatoide/metabolismo , Doenças Autoimunes/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/patologia , Receptores de Interleucina-17/metabolismo
14.
Am J Respir Cell Mol Biol ; 61(1): 51-60, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30508396

RESUMO

Supplemental O2 (hyperoxia; 30-90% O2) is a necessary intervention for premature infants, but it contributes to development of neonatal and pediatric asthma, necessitating better understanding of contributory mechanisms in hyperoxia-induced changes to airway structure and function. In adults, environmental stressors promote formation of senescent cells that secrete factors (senescence-associated secretory phenotype), which can be inflammatory and have paracrine effects that enhance chronic lung diseases. Hyperoxia-induced changes in airway structure and function are mediated in part by effects on airway smooth muscle (ASM). In the present study, using human fetal ASM cells as a model of prematurity, we ascertained the effects of clinically relevant moderate hyperoxia (40% O2) on cellular senescence. Fetal ASM exposed to 40% O2 for 7 days exhibited elevated concentrations of senescence-associated markers, including ß-galactosidase; cell cycle checkpoint proteins p16, p21, and p-p53; and the DNA damage marker p-γH2A.X (phosphorylated γ-histone family member X). The combination of dasatinib and quercetin, compounds known to eliminate senescent cells (senolytics), reduced the number of hyperoxia-exposed ß-galactosidase-, p21-, p16-, and p-γH2A.X-positive ASM cells. The senescence-associated secretory phenotype profile of hyperoxia-exposed cells included both profibrotic and proinflammatory mediators. Naive ASM exposed to media from hyperoxia-exposed senescent cells exhibited increased collagen and fibronectin and higher contractility. Our data show that induction of cellular senescence by hyperoxia leads to secretion of inflammatory factors and has a functional effect on naive ASM. Cellular senescence in the airway may thus contribute to pediatric airway disease in the context of sequelae of preterm birth.


Assuntos
Senescência Celular , Feto/patologia , Hiperóxia/patologia , Pulmão/embriologia , Miócitos de Músculo Liso/patologia , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Citocinas/metabolismo , Dano ao DNA , Dasatinibe/farmacologia , Etoposídeo/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Modelos Biológicos , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , Quercetina/farmacologia
15.
Front Physiol ; 9: 951, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090065

RESUMO

Vascular stiffening in the pulmonary arterial bed is increasingly recognized as an early disease marker and contributor to right ventricular workload in pulmonary hypertension. Changes in pulmonary artery stiffness throughout the pulmonary vascular tree lead to physiologic alterations in pressure and flow characteristics that may contribute to disease progression. These findings have led to a greater focus on the potential contributions of extracellular matrix remodeling and mechanical signaling to pulmonary hypertension pathogenesis. Several recent studies have demonstrated that the cellular response to vascular stiffness includes upregulation of signaling pathways that precipitate further vascular remodeling, a process known as mechanobiological feedback. The extracellular matrix modifiers, mechanosensors, and mechanotransducers responsible for this process have become increasingly well-recognized. In this review, we discuss the impact of vascular stiffening on pulmonary hypertension morbidity and mortality, evidence in favor of mechanobiological feedback in pulmonary hypertension pathogenesis, and the major contributors to mechanical signaling in the pulmonary vasculature.

17.
Respir Res ; 19(1): 91, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747634

RESUMO

BACKGROUND: Fibroblast apoptosis is a critical component of normal repair and the acquisition of an apoptosis-resistant phenotype contributes to the pathogenesis of fibrotic repair. Fibroblasts from fibrotic lungs of humans and mice demonstrate resistance to apoptosis induced by Fas-ligand and prior studies have shown that susceptibility to apoptosis is enhanced when Fas (CD95) expression is increased in these cells. Moreover, prior work shows that Fas expression in fibrotic lung fibroblasts is reduced by epigenetic silencing of the Fas promoter. However, the mechanisms by which microenvironmental stimuli such as TGF-ß1 and substrate stiffness affect fibroblast Fas expression are not well understood. METHODS: Primary normal human lung fibroblasts (IMR-90) were cultured on tissue culture plastic or on polyacrylamide hydrogels with Young's moduli to recapitulate the compliance of normal (400 Pa) or fibrotic (6400 Pa) lung tissue and treated with or without TGF-ß1 (10 ng/mL) in the presence or absence of protein kinase inhibitors and/or inflammatory cytokines. Expression of Fas was assessed by quantitative real time RT-PCR, ELISA and Western blotting. Soluble Fas (sFas) was measured in conditioned media by ELISA. Apoptosis was assessed using the Cell Death Detection Kit and by Western blotting for cleaved PARP. RESULTS: Fas expression and susceptibility to apoptosis was diminished in fibroblasts cultured on 6400 Pa substrates compared to 400 Pa substrates. TGF-ß1 reduced Fas mRNA and protein in a time- and dose-dependent manner dependent on focal adhesion kinase (FAK). Surprisingly, TGF-ß1 did not significantly alter cell-surface Fas expression, but did stimulate secretion of sFas. Finally, enhanced Fas expression and increased susceptibility to apoptosis was induced by combined treatment with TNF-α/IFN-γ and was not inhibited by TGF-ß1. CONCLUSIONS: Soluble and matrix-mediated pro-fibrotic stimuli promote fibroblast resistance to apoptosis by decreasing Fas transcription while stimulating soluble Fas secretion. These findings suggest that distinct mechanisms regulating Fas expression in fibroblasts may serve different functions in the complex temporal and spatial evolution of normal and fibrotic wound-repair responses.


Assuntos
Apoptose/fisiologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Receptor fas/biossíntese , Receptor fas/genética , Apoptose/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibrose , Expressão Gênica , Humanos , Fator de Crescimento Transformador beta1/toxicidade
18.
J Cell Sci ; 131(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29678906

RESUMO

Myofibroblasts play key roles in wound healing and pathological fibrosis. Here, we used an RNAi screen to characterize myofibroblast regulatory genes, using a high-content imaging approach to quantify α-smooth muscle actin stress fibers in cultured human fibroblasts. Screen hits were validated on physiological compliance hydrogels, and selected hits tested in primary fibroblasts from patients with idiopathic pulmonary fibrosis. Our RNAi screen led to the identification of STAT3 as an essential mediator of myofibroblast activation and function. Strikingly, we found that STAT3 phosphorylation, while responsive to exogenous ligands on both soft and stiff matrices, is innately active on a stiff matrix in a ligand/receptor-independent, but ROCK- and JAK2-dependent fashion. These results demonstrate how a cytokine-inducible signal can become persistently activated by pathological matrix stiffening. Consistent with a pivotal role for this pathway in driving persistent fibrosis, a STAT3 inhibitor attenuated murine pulmonary fibrosis when administered in a therapeutic fashion after bleomycin injury. Our results identify novel genes essential for the myofibroblast phenotype, and point to STAT3 as an important target in pulmonary fibrosis and other fibrotic diseases.


Assuntos
Janus Quinase 2/metabolismo , Miofibroblastos/metabolismo , Fibrose Pulmonar/genética , Interferência de RNA , Fator de Transcrição STAT3/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Feminino , Fibroblastos/metabolismo , Humanos , Janus Quinase 2/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fibrose Pulmonar/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais , Quinases Associadas a rho/genética
19.
Matrix Biol ; 73: 77-104, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29524630

RESUMO

The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.


Assuntos
Matriz Extracelular/fisiologia , Pneumopatias/metabolismo , Pulmão/metabolismo , Fenômenos Biomecânicos , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Homeostase , Humanos , Fenótipo
20.
Am J Physiol Lung Cell Mol Physiol ; 314(6): L946-L955, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29469613

RESUMO

Lung function is inherently mechanical in nature and depends on the capacity to conduct air and blood to and from the gas exchange regions. Variations in the elastic properties of the human lung across anatomical compartments and with aging are likely important determinants of lung function but remain relatively poorly characterized. Here we applied atomic force microscopy microindentation to characterize human lung tissue from subjects ranging in age from 11 to 60 yr old. We observed striking anatomical variations in elastic modulus, with the airways (200- to 350-µm diameter) the stiffest and the parenchymal regions the most compliant. Vessels (diameter < 100 µm) represented an intermediate mechanical environment and displayed diameter-dependent trends in elastic modulus. Binning our samples into younger (11-30 yr old) and older (41-60 yr old) groups, we observed significant age-related increases in stiffness in parenchymal and vessel compartments, with the most pronounced changes in the vessels. To investigate cellular mechanisms that might contribute to vascular stiffening with aging, we studied primary human pulmonary artery smooth muscle cells from subjects ranging in age from 11 to 60 yr old. While we observed no change in the mechanical properties of the cells themselves, we did observe trends toward increases in traction forces and extracellular matrix deposition with aging. These results demonstrate age-related changes in tissue mechanical properties that likely contribute to impaired lung function with aging and underscore the potential to identify mechanisms that contribute to mechanical tissue remodeling through the study of human cells and tissues from across the aging spectrum.


Assuntos
Envelhecimento/metabolismo , Remodelação das Vias Aéreas , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Pulmão/metabolismo , Pulmão/ultraestrutura , Adolescente , Adulto , Criança , Módulo de Elasticidade , Feminino , Humanos , Masculino , Microscopia de Força Atômica , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA