Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Sci Rep ; 9(1): 11399, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388036

RESUMO

It is critical, but difficult, to catch the small variation in genomic or other kinds of data that differentiates phenotypes or categories. A plethora of data is available, but the information from its genes or elements is spread over arbitrarily, making it challenging to extract relevant details for identification. However, an arrangement of similar genes into clusters makes these differences more accessible and allows for robust identification of hidden mechanisms (e.g. pathways) than dealing with elements individually. Here we propose, DeepInsight, which converts non-image samples into a well-organized image-form. Thereby, the power of convolution neural network (CNN), including GPU utilization, can be realized for non-image samples. Furthermore, DeepInsight enables feature extraction through the application of CNN for non-image samples to seize imperative information and shown promising results. To our knowledge, this is the first work to apply CNN simultaneously on different kinds of non-image datasets: RNA-seq, vowels, text, and artificial.

2.
Sci Rep ; 9(1): 9153, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235800

RESUMO

Brain-computer interface (BCI) systems having the ability to classify brain waves with greater accuracy are highly desirable. To this end, a number of techniques have been proposed aiming to be able to classify brain waves with high accuracy. However, the ability to classify brain waves and its implementation in real-time is still limited. In this study, we introduce a novel scheme for classifying motor imagery (MI) tasks using electroencephalography (EEG) signal that can be implemented in real-time having high classification accuracy between different MI tasks. We propose a new predictor, OPTICAL, that uses a combination of common spatial pattern (CSP) and long short-term memory (LSTM) network for obtaining improved MI EEG signal classification. A sliding window approach is proposed to obtain the time-series input from the spatially filtered data, which becomes input to the LSTM network. Moreover, instead of using LSTM directly for classification, we use regression based output of the LSTM network as one of the features for classification. On the other hand, linear discriminant analysis (LDA) is used to reduce the dimensionality of the CSP variance based features. The features in the reduced dimensional plane after performing LDA are used as input to the support vector machine (SVM) classifier together with the regression based feature obtained from the LSTM network. The regression based feature further boosts the performance of the proposed OPTICAL predictor. OPTICAL showed significant improvement in the ability to accurately classify left and right-hand MI tasks on two publically available datasets. The improvements in the average misclassification rates are 3.09% and 2.07% for BCI Competition IV Dataset I and GigaDB dataset, respectively. The Matlab code is available at https://github.com/ShiuKumar/OPTICAL .

3.
J Hum Genet ; 64(7): 701-702, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31028281

RESUMO

Since the publication of this article, it has been brought to our attention, that the identified mutation (NM_015277: c.2617 G > A; p.Glu873Lys) is identical with the mutation (NM_001144967: c.2677 G > A; p.Glu893Lys) reported by Broix et al (Nature Genetics 48, 1349-1358, 2016 https://doi.org/10.1038/ng.3676 ). Therefore the mutation is not novel but recurrent. Accordingly, the word "novel" should be deleted throughout the article including the title. Thus, the title should read "A missense mutation in the HECT domain of NEDD4L identified in a girl with periventricular nodular heterotopia, polymicrogyria, and cleft palate."

4.
BMC Genomics ; 19(Suppl 9): 982, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999862

RESUMO

BACKGROUND: Post-translational modifications are viewed as an important mechanism for controlling protein function and are believed to be involved in multiple important diseases. However, their profiling using laboratory-based techniques remain challenging. Therefore, making the development of accurate computational methods to predict post-translational modifications is particularly important for making progress in this area of research. RESULTS: This work explores the use of four half-sphere exposure-based features for computational prediction of sumoylation sites. Unlike most of the previously proposed approaches, which focused on patterns of amino acid co-occurrence, we were able to demonstrate that protein structural based features could be sufficiently informative to achieve good predictive performance. The evaluation of our method has demonstrated high sensitivity (0.9), accuracy (0.89) and Matthew's correlation coefficient (0.78-0.79). We have compared these results to the recently released pSumo-CD method and were able to demonstrate better performance of our method on the same evaluation dataset. CONCLUSIONS: The proposed predictor HseSUMO uses half-sphere exposures of amino acids to predict sumoylation sites. It has shown promising results on a benchmark dataset when compared with the state-of-the-art method. The extracted data of this study can be accessed at https://github.com/YosvanyLopez/HseSUMO .


Assuntos
Algoritmos , Aminoácidos/química , Biologia Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Sumoilação , Sítios de Ligação , Humanos , Máquina de Vetores de Suporte
5.
BMC Bioinformatics ; 19(Suppl 13): 378, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717652

RESUMO

BACKGROUND: Molecular Recognition Features (MoRFs) are short protein regions present in intrinsically disordered protein (IDPs) sequences. MoRFs interact with structured partner protein and upon interaction, they undergo a disorder-to-order transition to perform various biological functions. Analyses of MoRFs are important towards understanding their function. RESULTS: Performance is reported using the MoRF dataset that has been previously used to compare the other existing MoRF predictors. The performance obtained in this study is equivalent to the benchmarked OPAL predictor, i.e., OPAL achieved AUC of 0.815, whereas the model in this study achieved AUC of 0.819 using TEST set. CONCLUSION: Achieving comparable performance, the proposed method can be used as an alternative approach for MoRF prediction.


Assuntos
Biologia Computacional/métodos , Proteínas Intrinsicamente Desordenadas/química , Sequência de Aminoácidos , Área Sob a Curva , Bases de Dados de Proteínas , Domínios Proteicos
6.
J Med Genet ; 56(6): 388-395, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30573562

RESUMO

BACKGROUND: In this study, we aimed to identify the gene abnormality responsible for pathogenicity in an individual with an undiagnosed neurodevelopmental disorder with megalencephaly, ventriculomegaly, hypoplastic corpus callosum, intellectual disability, polydactyly and neuroblastoma. We then explored the underlying molecular mechanism. METHODS: Trio-based, whole-exome sequencing was performed to identify disease-causing gene mutation. Biochemical and cell biological analyses were carried out to elucidate the pathophysiological significance of the identified gene mutation. RESULTS: We identified a heterozygous missense mutation (c.173C>T; p.Thr58Met) in the MYCN gene, at the Thr58 phosphorylation site essential for ubiquitination and subsequent MYCN degradation. The mutant MYCN (MYCN-T58M) was non-phosphorylatable at Thr58 and subsequently accumulated in cells and appeared to induce CCND1 and CCND2 expression in neuronal progenitor and stem cells in vitro. Overexpression of Mycn mimicking the p.Thr58Met mutation also promoted neuronal cell proliferation, and affected neuronal cell migration during corticogenesis in mouse embryos. CONCLUSIONS: We identified a de novo c.173C>T mutation in MYCN which leads to stabilisation and accumulation of the MYCN protein, leading to prolonged CCND1 and CCND2 expression. This may promote neurogenesis in the developing cerebral cortex, leading to megalencephaly. While loss-of-function mutations in MYCN are known to cause Feingold syndrome, this is the first report of a germline gain-of-function mutation in MYCN identified in a patient with a novel megalencephaly syndrome similar to, but distinct from, CCND2-related megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The data obtained here provide new insight into the critical role of MYCN in brain development, as well as the consequences of MYCN defects.

7.
Life Sci Alliance ; 1(6): e201800098, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30515477

RESUMO

Recent trends in drug development have been marked by diminishing returns caused by the escalating costs and falling rates of new drug approval. Unacceptable drug toxicity is a substantial cause of drug failure during clinical trials and the leading cause of drug withdraws after release to the market. Computational methods capable of predicting these failures can reduce the waste of resources and time devoted to the investigation of compounds that ultimately fail. We propose an original machine learning method that leverages identity of drug targets and off-targets, functional impact score computed from Gene Ontology annotations, and biological network data to predict drug toxicity. We demonstrate that our method (TargeTox) can distinguish potentially idiosyncratically toxic drugs from safe drugs and is also suitable for speculative evaluation of different target sets to support the design of optimal low-toxicity combinations.

8.
Sci Rep ; 8(1): 17923, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560923

RESUMO

The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct .

9.
Molecules ; 23(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544729

RESUMO

Post Translational Modification (PTM) is defined as the modification of amino acids along the protein sequences after the translation process. These modifications significantly impact on the functioning of proteins. Therefore, having a comprehensive understanding of the underlying mechanism of PTMs turns out to be critical in studying the biological roles of proteins. Among a wide range of PTMs, sumoylation is one of the most important modifications due to its known cellular functions which include transcriptional regulation, protein stability, and protein subcellular localization. Despite its importance, determining sumoylation sites via experimental methods is time-consuming and costly. This has led to a great demand for the development of fast computational methods able to accurately determine sumoylation sites in proteins. In this study, we present a new machine learning-based method for predicting sumoylation sites called SumSec. To do this, we employed the predicted secondary structure of amino acids to extract two types of structural features from neighboring amino acids along the protein sequence which has never been used for this task. As a result, our proposed method is able to enhance the sumoylation site prediction task, outperforming previously proposed methods in the literature. SumSec demonstrated high sensitivity (0.91), accuracy (0.94) and MCC (0.88). The prediction accuracy achieved in this study is 21% better than those reported in previous studies. The script and extracted features are publicly available at: https://github.com/YosvanyLopez/SumSec.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Sequência de Aminoácidos , Sítios de Ligação , Internet , Aprendizado de Máquina , Modelos Moleculares , Estrutura Secundária de Proteína , Proteínas/genética , Sumoilação
10.
Artigo em Inglês | MEDLINE | ID: mdl-30477169

RESUMO

Although it has been a half-century since dioxin-contaminated herbicides were used to defoliate the landscape during the Vietnam War, dioxin contamination "hotspots" still remain in Vietnam. Environmental and health impacts of these hotspots need to be evaluated. Intellectual disability (ID) is one of the diseases found in the children of people exposed to the herbicides. This study aims to identify genetic alterations of a patient whose family lived in a dioxin hotspot. The patient's father had a highly elevated dioxin concentration. He was affected with undiagnosed moderate ID. To analyze de novo mutations and genetic variations, and to identify causal gene(s) for ID, we performed whole genome sequencing (WGS) of the proband and his parents. Two de novo missense mutations were detected, each one in ETS2 and ZNF408 genes, respectively. Compound heterozygosity was identified in CENPF and TTN genes. Existing knowledge on the genes and bioinformatics analyses suggest that EST2, ZNF408, and CENPF might be promising candidates for ID causative genes.

11.
Sci Rep ; 8(1): 15554, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349143

RESUMO

Macaca fascicularis is a highly advantageous model in which to study human cochlea with regard to both evolutionary proximity and physiological similarity of the auditory system. To better understand the properties of primate cochlear function, we analyzed the genes predominantly expressed in M. fascicularis cochlea. We compared the cochlear transcripts obtained from an adult male M. fascicularis by macaque and human GeneChip microarrays with those in multiple macaque and human tissues or cells and identified 344 genes with expression levels more than 2-fold greater than in the other tissues. These "cochlear signature genes" included 35 genes responsible for syndromic or nonsyndromic hereditary hearing loss. Gene set enrichment analysis revealed groups of genes categorized as "ear development" and "ear morphogenesis" in the top 20 gene ontology categories in the macaque and human arrays, respectively. This dataset will facilitate both the study of genes that contribute to primate cochlear function and provide insight to discover novel genes associated with hereditary hearing loss that have yet to be established using animal models.

12.
Proteomics ; : e1800058, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30324701

RESUMO

Intrinsically disordered proteins (IDPs) contain long unstructured regions, which play an important role in their function. These intrinsically disordered regions (IDRs) participate in binding events through regions called molecular recognition features (MoRFs). Computational prediction of MoRFs helps identify the potentially functional regions in IDRs. In this study, OPAL+, a novel MoRF predictor, is presented. OPAL+ uses separate models to predict MoRFs of varying lengths along with incorporating the hidden Markov model (HMM) profiles and physicochemical properties of MoRFs and their flanking regions. Together, these features help OPAL+ achieve a marginal performance improvement of 0.4-0.7% over its predecessor for diverse MoRF test sets. This performance improvement comes at the expense of increased run time as a result of the requirement of HMM profiles. OPAL+ is available for download at https://github.com/roneshsharma/OPAL-plus/wiki/OPAL-plus-Download.

13.
Eur J Hum Genet ; 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202041

RESUMO

Although the detection of predictive biomarkers is of particular importance for the development of accurate molecular diagnostics, conventional statistical analyses based on gene-by-treatment interaction tests lack sufficient statistical power for this purpose, especially in large-scale clinical genome-wide studies that require an adjustment for multiplicity of a huge number of tests. Here we demonstrate an alternative efficient multi-subgroup screening method using multidimensional hierarchical mixture models developed to overcome this issue, with application to stroke and breast cancer randomized clinical trials with genomic data. We show that estimated effect size distributions of single nucleotide polymorphisms (SNPs) associated with outcomes, which could provide clues for exploring predictive biomarkers, optimizing individualized treatments, and understanding biological mechanisms of diseases. Furthermore, using this method we detected three new SNPs that are associated with blood homocysteine levels, which are strongly associated with the risk of stroke. We also detected six new SNPs that are associated with progression-free survival in breast cancer patients.

14.
Hum Genet ; 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006735

RESUMO

Alzheimer's disease (AD) is a common neurological disease that causes dementia in humans. Although the reports of associated pathological genes have been increasing, the molecular mechanism leading to the accumulation of amyloid-ß (Aß) in human brain is still not well understood. To identify novel genes that cause accumulation of Aß in AD patients, we conducted an integrative analysis by combining a human genetic association study and transcriptome analysis in mouse brain. First, we examined genome-wide gene expression levels in the hippocampus, comparing them to amyloid Aß level in mice with mixed genetic backgrounds. Next, based on a GWAS statistics obtained by a previous study with human AD subjects, we obtained gene-based statistics from the SNP-based statistics. We combined p values from the two types of analysis across orthologous gene pairs in human and mouse into one p value for each gene to evaluate AD susceptibility. As a result, we found five genes with significant p values in this integrated analysis among the 373 genes analyzed. We also examined the gene expression level of these five genes in the hippocampus of independent human AD cases and control subjects. Two genes, LBH and SHF, showed lower expression levels in AD cases than control subjects. This is consistent with the gene expression levels of both the genes in mouse which were negatively correlated with Aß accumulation. These results, obtained from the integrative approach, suggest that LBH and SHF are associated with the AD pathogenesis.

16.
J Hum Genet ; 63(10): 1083-1091, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30054556

RESUMO

To identify factors associated with ranibizumab responses in patients with exudative age-related macular degeneration (AMD), we performed a genome-wide association study (GWAS) and a replication study using a total of 919 exudative AMD patients treated with intravitreal ranibizumab in a Japanese population. In the combined analysis of GWAS and the replication study, no loci reached genome-wide significant level; however, we found four variants showed suggestive level of associations with visual loss at month three (rs17822656, rs76150532, rs17296444, and rs75165563: Pcombined < 1.0 × 10-5). Of the candidate genes within these loci, three were relevant to VEGF-related pathway (KCNMA1, SOCS2, and OTX2). The proportions of patients who worsened visual acuity were 13.7%, 38.8%, 58.0%, and 80.0% in patients with 0, 1, 2, and 3 or more identified risk variants, respectively. Changes in visual acuity decreased linearly as the number of risk variants increased (P = 1.67 × 10-12). The area under the curve using age, baseline visual acuity, and history of previous treatment was 0.607, and improved significantly to 0.713 in combination with identified variants (P < 0.0001). Although further study is needed to confirm their associations, our results offer candidate variants influencing response to ranibizumab therapy.

17.
Front Genet ; 9: 227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002671

RESUMO

Major depressive disorder (MDD) is a complex, heritable psychiatric disorder. Advanced statistical genetics for genome-wide association studies (GWASs) have suggested that the heritability of MDD is largely explained by common single nucleotide polymorphisms (SNPs). However, until recently, there has been little success in identifying MDD-associated SNPs. Here, based on an empirical Bayes estimation of a semi-parametric hierarchical mixture model using summary statistics from GWASs, we show that MDD has a distinctive polygenic architecture consisting of a relatively small number of risk variants (~17%), e.g., compared to schizophrenia (~42%). In addition, these risk variants were estimated to have very small effects (genotypic odds ratio ≤ 1.04 under the additive model). Based on the estimated architecture, the required sample size for detecting significant SNPs in a future GWAS was predicted to be exceptionally large. It is noteworthy that the number of genome-wide significant MDD-associated SNPs would rapidly increase when collecting 50,000 or more MDD-cases (and the same number of controls); it can reach as much as 100 SNPs out of nearly independent (linkage disequilibrium pruned) 100,000 SNPs for ~120,000 MDD-cases.

18.
Hum Mutat ; 39(10): 1384-1392, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29969170

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) or dioxin, is commonly considered the most toxic man-made substance. Dioxin exposure impacts human health and diseases, birth defects and teratogenesis were frequently observed in children of persons who have been exposed to dioxin. However, the impact of dioxin on human mutation rate in trios has not yet been elucidated at the whole genome level. To identify and characterize the genetic alterations in the individuals exposed to dioxin, we performed whole genome sequencing (WGS) of nine Vietnamese trios whose fathers were exposed to dioxin. In total, 846 de novo point mutations, 26 de novo insertions and deletions, 4 de novo structural variations, and 1 de novo copy number variation were identified. The number of point mutations and dioxin concentrations were positively correlated (P-value < 0.05). Considering the substitution pattern, the number of A > T/T > A mutation and the dioxin concentration was positively correlated (P-value < 0.05). Our analysis also identified one possible disease-related mutation in LAMA5 in one trio. These findings suggested that dioxin exposure might affect father genomes of trios leading to de novo mutations in their children. Further analysis with larger sample sizes would be required to better clarify mutation rates and substitution patterns in trios caused by dioxin.

19.
J Hum Genet ; 63(9): 957-963, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29907875

RESUMO

Microcephaly-capillary malformation syndrome is a congenital and neurodevelopmental disorder caused by biallelic mutations in the STAMBP gene. Here we identify the novel homozygous mutation located in the SH3 binding motif of STAMBP (NM_006463.4) (c.707C>T: p.Ser236Phe) through whole-exome sequencing. The case patient was a 2-year-old boy showing severe global developmental delay, progressive microcephaly, refractory seizures, dysmorphic facial features, and multiple capillary malformations. Immunoblot analysis of patient-derived lymphoblastoid cell lines (LCLs) revealed a severe reduction in STAMBP expression, indicating that Ser236Phe induces protein instability. STAMBP interacts with the SH3 domain of STAM and transduces downstream signals from the Jaks-STAM complex. The substitution of Ser236Phe found in the case patient was located in the SH3-binding motif, and we propose the mutation may block STAM binding and subsequently induce STAMBP degradation. Contrary to previously reported STAMBP mutations, the Ser236Phe mutation did not lead to constitutive activation of the PI3K-AKT-mTOR pathway in patient-derived LCLs, as indicated by the expression of phosphorylated S6 ribosomal protein, suggesting that it is not the major pathomechanism underlying the disorder in this patient.

20.
BMC Pediatr ; 18(1): 171, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792164

RESUMO

BACKGROUND: Waardenburg syndrome type 1 (WS1) can be distinguished from Waardenburg syndrome type 2 (WS2) by the presence of dystopia canthorum. About 96% of WS1 are due to PAX3 mutations, and SOX10 mutations have been reported in 15% of WS2. CASE PRESENTATION: This report describes a patient with WS1 who harbored a novel SOX10 nonsense mutation (c.652G > T, p.G218*) in exon 3 which is the penultimate exon. The patient had mild prodromal neurological symptoms that were followed by severe attacks of generalized seizures associated with delayed myelination of the brain. The immature myelination recovered later and the neurological symptoms could be improved. This is the first truncating mutation in exon 3 of SOX10 that is associated with neurological symptoms in Waardenburg syndrome. Previous studies reported that the neurological symptoms that associate with WS are congenital and irreversible. These findings suggest that the reversible neurological phenotype may be associated with the nonsense mutation in exon 3 of SOX10. CONCLUSIONS: When patients of WS show mild prodromal neurological symptoms, the clinician should be aware of the possibility that severe attacks of generalized seizures may follow, which may be associated with the truncating mutation in exon 3 of SOX10.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA