Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Nanoscale ; 10(13): 6214, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29595205


Correction for 'A high quality liquid-type quantum dot white light-emitting diode' by Chin-Wei Sher et al., Nanoscale, 2016, 8, 1117-1122.

ACS Appl Mater Interfaces ; 9(40): 35279-35286, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28891282


This study developed flexible light-emitting diodes (LEDs) with warm white and neutral white light. A simple ultraviolet flip-chip sticking process was adopted for the pumping source and combined with polymer and quantum dot (QD) films technology to yield white light. The polymer-blended flexible LEDs exhibited higher luminous efficiency than the QD-blended flexible LEDs. Moreover, the polymer-blended LEDs achieved excellent color-rendering index (CRI) values (Ra = 96 and R9 = 96), with high reliability, demonstrating high suitability for special applications like accent, down, or retrofit lights in the future. In places such as a museum, kitchen, or surgery room, its high R9 and high CRI characteristics can provide high-quality services.

Opt Express ; 24(2): A341-9, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832586


A novel combination of blue LED chips, transparent glass substrates and phosphors with PDMS thin film is demonstrated. The flip-chip bonding technology is applied to facilitate this design. The ZrO(2) nanoparticles are also doped into the PDMS film to increase light scattering. The resultant luminous efficiency shows an 11% enhancement when compared to the regular COG device. The variation of correlated color temperature of such devices is also reduced to 132K. In addition to these changes, the surface temperature is reduced from 121°C to 104°C due to good thermal dissipation brought by ZrO(2) nanoparticles.

Nanoscale ; 8(2): 1117-22, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26666455


This study demonstrates a novel package design to store colloidal quantum dots in liquid format and integrate them with a standard LED. The high efficiency and high quality color performance at a neutral white correlated color temperature is demonstrated. The experimental results indicate that the liquid-type quantum dot white light-emitting diode (LQD WLED) is highly efficient and reliable. The luminous efficiency and color rendering index (CRI) of the LQD WLED can reach 271 lm Wop(-1) and 95, respectively. Moreover, a glass box is employed to prevent humidity and oxygen erosion. With this encapsulation design, our quantum dot box can survive over 1000 hours of storage time.

Opt Express ; 23(19): A1167-78, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406747


This study demonstrates the flexible white LED structure with high lumen efficiency and uniform optical performance for neutral white and warm white CCT. Flip-chip LEDs were attached on a polyimide substrate with copper strips as electrical and thermal conduction paths. Yellow phosphors are mixed with polydimenthysiloxane (PDMS) to provide mechanical support and flexibility. The light efficiency of this device can reach 120 lm/W and 85% of light output uniformity of the emission area can be achieved. Moreover, the optical simulation is employed to evaluate various designs of this flexible film in order to obtain uniform output. Both the pitch between the individual devices and the thickness of the phosphor film are calculated for optimization purpose. This flexible white LED with high lumen efficiency and good reliability is suitable for the large area fixture in the general lighting applications.