Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 222: 112263, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339994

RESUMO

The biosynthesis of polyphenolic compounds in cabbage waste, outer green leaves of white head cabbage (Brassica oleracea L. var. capitata subvar. alba), was stimulated by postharvest irradiation with UVB lamps or sunlight. Both treatments boosted the content of kaempferol and quercetin glycosides, especially in the basal leaf zone, as determined by the HPLC analysis of leaf extracts and by a non-destructive optical sensor. The destructive analysis of samples irradiated by the sun for 6 days at the end of October 2015 in Skierniewice (Poland) showed an increase of leaf flavonols by 82% with respect to controls. The treatment by a broadband UVB fluorescent lamp, with irradiance of 0.38 W m-2 in the 290-315 nm range (and 0.59 W m-2 in the UVA region) for 12 h per day at 17 °C along with a white light of about 20 µmol m-2 s-1, produced a flavonols increase of 58% with respect to controls. The kinetics of flavonols accumulation in response to the photochemical treatments was monitored with the FLAV non-destructive index. The initial FLAV rate under the sun was proportional to the daily radiation doses with a better correlation for the sun global irradiance (R2 = 0.973), followed by the UVA (R2 = 0.965) and UVB (R2 = 0.899) irradiance. The sunlight turned out to be more efficient than the UVB lamp in increasing the flavonols level of waste leaves, because of a significant role played by UVA and visible solar radiation in the regulation of the flavonoid accumulation in cabbage. The FLAV index increase induced on the adaxial leaf side was accompanied by a lower but still significant FLAV increase on the unirradiated abaxial side, likely due to a systemic signaling by mean of the long-distance movement of macromolecules. Our present investigation provides useful data for the optimization of postharvest photochemical protocols of cabbage waste valorization. It can represent a novel and alternative tool of vegetable waste management for the recovery of beneficial phytochemicals.


Assuntos
Brassica/efeitos da radiação , Luz , Brassica/química , Brassica/metabolismo , Clorofila/química , Cromatografia Líquida de Alta Pressão , Flavonóis/análise , Flavonóis/metabolismo , Armazenamento de Alimentos , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espectrometria de Fluorescência , Raios Ultravioleta
2.
Sensors (Basel) ; 20(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059448

RESUMO

Non-destructive tools for the in situ evaluation of vine fruit quality and vineyard management can improve the market value of table grape. We proposed a new approach based on a portable fluorescence sensor to map the ripening level of Crimson Seedless table grape in five different plots in the East, Central-North and South of the Macedonia Region of Greece. The sensor provided indices of ripening and color such as SFRR and ANTHRG correlated to the chlorophyll and anthocyanin berry contents, respectively. The mean ANTHRG index was significantly different among all the plots examined due to the occurrence of different environmental conditions and/or asynchronous ripening processes. The indices presented moderate, poor in some cases, spatial variability, probably due to a significant vine-to-vine, intra-vine and intra-bunch variability. The cluster analysis was applied to the plot with the most evident spatial structure (at Kilkis). Krigged maps of the SFRR, ANTHRG and yield were classified by k-means clustering in two-zones that differed significantly in their mean values. ANTHRG and SFRR were inversely correlated over 64% of the plot. SFRR appeared to be a potential useful proxy of yield since it was directly correlated to yield over 66% of the plot. The grape color (ANTHRG) was slightly higher over the low-yield zones with respect to the high-yield zones. Our study showed that the combination of anthocyanins and chlorophyll indices detected in the field on Crimson Seedless table grape by a portable fluorescence sensor can help in defining the best harvest time and the best areas for harvesting.


Assuntos
Técnicas Biossensoriais/instrumentação , Sementes/fisiologia , Vitis/fisiologia , Algoritmos , Antocianinas/análise , Clorofila/análise , Fluorescência , Estatística como Assunto
3.
J Sci Food Agric ; 99(6): 2763-2774, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30430568

RESUMO

BACKGROUND: Accumulation and stability of tomato lycopene markedly depends on the cultivar, plant growing and storage conditions. To estimate lycopene in open-field cultivated processing and fresh market tomatoes, we used a calibrated spectral reflectance portable sensor. RESULTS: Lycopene accumulation in fruits attached to the plant, starting from the Green ripening stage, followed a sigmoidal function. It was faster and reached higher levels in processing (cv. Calista) than fresh market (cv. Volna) tomatoes (90 and 62 mg kg-1 fresh weight, respectively). During storage at 12, 20 and 25 °C, Red tomatoes retained about 90% of harvest lycopene for three weeks. Pink tomatoes increased lycopene during the first week of storage, but never reached the lycopene values of Red tomatoes ripened on the vine. Storability at 12 °C retaining the highest quality in red tomatoes was limited to 14 and 7 days for Calista and Volna cultivars, respectively. CONCLUSION: Significant differences in lycopene accumulation and stability between processing and fresh market tomatoes were established by examining with time the very same fruits by a non-destructive optical tool. It can be useful in agronomical and post-harvest physiological studies and can be of interest for producers oriented to the niche nutraceutical market. © 2018 Society of Chemical Industry.


Assuntos
Frutas/química , Licopeno/química , Lycopersicon esculentum/química , Carotenoides/análise , Manipulação de Alimentos , Armazenamento de Alimentos , Óptica e Fotônica
4.
J Agric Food Chem ; 66(23): 5778-5789, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29775294

RESUMO

We analyzed the potential of non-destructive optical sensing of grape skin anthocyanins for selective harvesting in precision viticulture. We measured anthocyanins by a hand-held fluorescence optical sensor on a 7 ha Sangiovese vineyard plot in central Italy. Optical indices obtained by the sensor were calibrated for the transformation in units of anthocyanins per berry mass, i.e., milligrams per gram of berry fresh weight. A full protocol for optimal data filtration, interpolation, and homogeneous zone delineation based on a very large number of optical measurements is proposed. Both the single signal-based fluorescence index (ANTHR) and the two signal ratio-based index (ANTHRG) can be used for Sangiovese grapes. Significant separations of grape-quality batches were obtained by several methods of data classification and zone delineations. Basic statistical criteria were as efficient as the K-means clustering. The best separations were obtained for three classes of grape skin anthocyanin.


Assuntos
Agricultura/métodos , Antocianinas/análise , Frutas/química , Frutas/crescimento & desenvolvimento , Vitis , Vinho
5.
J Agric Food Chem ; 66(18): 4748-4757, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29677447

RESUMO

Reflectance spectroscopy represents a useful tool for the nondestructive assessment of tomato lycopene, even in the field. For this reason, a compact, low-cost, light emitting diode-based sensor has been developed to measure reflectance in the 400-750 nm spectral range. It was calibrated against wet chemistry and evaluated by partial least squares (PLS) regression analyses. The lycopene prediction models were defined for two open-field cultivated red-tomato varieties: the processing oblong tomatoes of the cv. Calista (average weight: 76 g) and the fresh-consumption round tomatoes of the cv. Volna (average weight: 130 g), over a period of two consecutive years. The lycopene prediction models were dependent on both cultivar and season. The lycopene root mean square error of prediction produced by the 2014 single-cultivar calibrations validated on the 2015 samples was large (33 mg kg-1) in the Calista tomatoes and acceptable (9.5 mg kg-1) in the Volna tomatoes. A more general bicultivar and biyear model could still explain almost 80% of the predicted lycopene variance, with a relative error in red tomatoes of less than 20%. In 2016, the in-field applications of the multiseasonal prediction models, built with the 2014 and 2015 data, showed significant ( P < 0.001) differences in the average lycopene estimated in the crop on two sampling dates that were 20 days apart: on August 19 and September 7, 2016, the lycopene was 98.9 ± 9.3 and 92.2 ± 10.8 mg kg-1 FW for cv. Calista and 54.6 ± 13.2 and 60.8 ± 6.8 mg kg-1 FW for cv. Volna. The sensor was also able to monitor the temporal evolution of lycopene accumulation on the very same fruits attached to the plants. These results indicated that a simple, compact reflectance device and PLS analysis could provide adequately precise and robust (through-seasons) models for the nondestructive assessment of lycopene in whole tomatoes. This technique could guarantee tomatoes with the highest nutraceutical value from the production, during storage and distribution, and finally to consumers.


Assuntos
Carotenoides/análise , Frutas/química , Lycopersicon esculentum/crescimento & desenvolvimento , Antioxidantes/análise , Antioxidantes/metabolismo , Carotenoides/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Licopeno , Lycopersicon esculentum/química , Lycopersicon esculentum/metabolismo , Estações do Ano
6.
J Agric Food Chem ; 64(1): 85-94, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26679081

RESUMO

A multiparametric optical sensor was used to nondestructively estimate phytochemical compounds in white cabbage leaves directly in the field. An experimental site of 1980 white cabbages (Brassica oleracea L. var. capitata subvar. alba), under different nitrogen (N) treatments, was mapped by measuring leaf transmittance and chlorophyll fluorescence screening in one leaf/cabbage head. The provided indices of flavonols (FLAV) and chlorophyll (CHL) displayed the opposite response to applied N rates, decreasing and increasing, respectively. The combined nitrogen balance index (NBI = CHL/FLAV) calculated was able to discriminate all of the plots under four N regimens (0, 100, 200, and 400 kg/ha) and was correlated with the leaf N content determined destructively. CHL and FLAV were properly calibrated against chlorophyll (R(2) = 0.945) and flavonol (R(2) = 0.932) leaf contents, respectively, by using a homographic fit function. The proposed optical sensing of cabbage crops can be used to estimate the N status of plants and perform precision fertilization to maintain acceptable crop yield levels and, additionally, to rapidly detect health-promoting flavonol antioxidants in Brassica plants.


Assuntos
Brassica/química , Clorofila/química , Flavonóis/química , Nitrogênio/metabolismo , Imagem Óptica/métodos , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Flavonóis/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
7.
J Agric Food Chem ; 61(50): 12211-8, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24279372

RESUMO

A nondestructive fluorescence-based technique for evaluating Vitis vinifera L. grape maturity using a portable sensor (Multiplex) is presented. It provides indices of anthocyanins and chlorophyll in Cabernet Sauvignon, Merlot, and Sangiovese red grapes and of flavonols and chlorophyll in Vermentino white grapes. The good exponential relationship between the anthocyanin index and the actual anthocyanin content determined by wet chemistry was used to estimate grape anthocyanins from in field sensor data during ripening. Marked differences were found in the kinetics and the amount of anthocyanins between cultivars and between seasons. A sensor-driven mapping of the anthocyanin content in the grapes, expressed as g·kg(-1) fresh weight, was performed on a 7-ha vineyard planted with Sangiovese. In the Vermentino, the flavonol index was favorably correlated to the actual content of berry skin flavonols determined by means of HPLC analysis of skin extracts. It was used to make a nondestructive estimate of the evolution in the flavonol concentration in grape berry samplings. The chlorophyll index was inversely correlated in a linear manner to the total soluble solids (°Brix): it could, therefore, be used as a new index of technological maturity. The fluorescence sensor (Multiplex) possesses a high potential for representing an important innovative tool for controlling grape maturity in precision viticulture.


Assuntos
Frutas/química , Imagem Óptica/métodos , Vitis/química , Vinho/análise , Antocianinas/análise , Flavonóis/análise , Frutas/classificação , Frutas/crescimento & desenvolvimento , Imagem Óptica/instrumentação , Vitis/classificação , Vitis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...