Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Clin Res Cardiol ; 108(11): 1297-1308, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30980206


BACKGROUND: Left ventricular non-compaction has been increasingly diagnosed in recent years. However, it is still debated whether non-compaction is a pathological condition or a physiological trait. In this meta-analysis and systematic review, we compare studies, which investigated these two different perspectives. Furthermore, we provide a comprehensive overview on the clinical outcome as well as genetic background of left ventricular non-compaction cardiomyopathy in adult patients. METHODS AND RESULTS: We retrieved PubMed/Medline literatures in English language from 2000 to 19/09/2018 on clinical outcome and genotype of patients with non-compaction. We summarized and extensively reviewed all studies that passed selection criteria and performed a meta-analysis on key phenotypic parameters. Altogether, 35 studies with 2271 non-compaction patients were included in our meta-analysis. The mean age at diagnosis was the mid of their fifth decade. Two-thirds of patients were male. Congenital heart diseases including atrial or ventricular septum defect or Ebstein anomaly were reported in 7% of patients. Twenty-four percent presented with family history of cardiomyopathy. The mean frequency of neuromuscular diseases was 5%. Heart rhythm abnormalities were reported frequently: conduction disease in 26%, supraventricular tachycardia in 17%, and sustained or non-sustained ventricular tachycardia in 18% of patients. Three important outcome measures were reported including systemic thromboembolic events with a mean frequency of 9%, heart transplantation with 4%, and adequate ICD therapy with 15%. Nine studies investigated the genetics of non-compaction cardiomyopathy. The most frequently mutated gene was TTN with a pooled frequency of 11%. The average frequency of MYH7 mutations was 9%, for MYBPC3 mutations 5%, and for CASQ2 and LDB3 3% each. TPM1, MIB1, ACTC1, and LMNA mutations had an average frequency of 2% each. Mutations in PLN, HCN4, TAZ, DTNA, TNNT2, and RBM20 were reported with a frequency of 1% each. We also summarized the results of eight studies investigating the non-compaction in altogether 5327 athletes, pregnant women, patients with sickle cell disease, as well as individuals from population-based cohorts, in which the presence of left ventricular hypertrabeculation ranged from 1.3 to 37%. CONCLUSION: The summarized data indicate that non-compaction may lead to unfavorable outcome in different cardiomyopathy entities. The presence of key features in a multimodal diagnostic approach could distinguish between benign morphological trait and manifest cardiomyopathy.

Miocárdio Ventricular não Compactado Isolado/genética , Humanos , Miocárdio Ventricular não Compactado Isolado/diagnóstico , Miocárdio Ventricular não Compactado Isolado/terapia
Clin Res Cardiol ; 107(1): 30-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28840316


BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease, which goes along with increased risk for sudden cardiac death (SCD). Despite the knowledge about the different causal genes, the relationship between individual genotypes and phenotypes is incomplete. METHODS AND RESULTS: We retrieved PubMed/Medline literatures on genotype-phenotype associations in patients with HCM and mutations in MYBPC3, MYH7, TNNT2, and TNNI3. Altogether, 51 studies with 7675 HCM patients were included in our meta-analysis. The average frequency of mutations in MYBPC3 (20%) and MYH7 (14%) was higher than TNNT2 and TNNI3 (2% each). The mean age of HCM onset for MYH7 mutation positive patients was the beginning of the fourth decade, significantly earlier than patients without sarcomeric mutations. A high male proportion was observed in TNNT2 (69%), MYBPC3 (62%) and mutation negative group (64%). Cardiac conduction disease, ventricular arrhythmia and heart transplantation (HTx) rate were higher in HCM patients with MYH7 mutations in comparison to MYBPC3 (p < 0.05). Furthermore, SCD was significantly higher in patients with sarcomeric mutations (p < 0.01). CONCLUSION: A pooled dataset and a comprehensive genotype-phenotype analysis show that the age at disease onset of HCM patients with MYH7 is earlier and leads to a more severe phenotype than in patient without such mutations. Furthermore, patients with sarcomeric mutations are more susceptible to SCD. The present study further supports the clinical interpretation of sarcomeric mutations in HCM patients.

Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Morte Súbita Cardíaca/prevenção & controle , Mutação , Cadeias Pesadas de Miosina/genética , Adulto , Idade de Início , Idoso , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/fisiopatologia , Cardiomiopatia Hipertrófica/terapia , Proteínas de Transporte/genética , Estudos de Casos e Controles , Morte Súbita Cardíaca/etiologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Transplante de Coração , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Fatores de Risco , Resultado do Tratamento , Troponina I/genética , Troponina T/genética , Adulto Jovem