Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Rep ; 7(1): 5344, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706289


Nominally anhydrous minerals formed deep in the mantle and transported to the Earth's surface contain tens to hundreds of ppm wt H2O, providing evidence for the presence of dissolved water in the Earth's interior. Even at these low concentrations, H2O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H2O in the Earth's upper mantle, but is not fully understood for olivine ((Mg, Fe)2SiO4) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine single crystals that were determined at upper mantle conditions (2 GPa and 750-900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10-10.9, 10-12.8 and 10-11.9 m2/s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σH = 102.12S/m·CH2O·exp-187kJ/mol/(RT). Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H2O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10-2-10-1 S/m) observed in the asthenosphere.

Nature ; 522(7555): 202-6, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062512


The relative motion of lithospheric plates and underlying mantle produces localized deformation near the lithosphere-asthenosphere boundary. The transition from rheologically stronger lithosphere to weaker asthenosphere may result from a small amount of melt or water in the asthenosphere, reducing viscosity. Either possibility may explain the seismic and electrical anomalies that extend to a depth of about 200 kilometres. However, the effect of melt on the physical properties of deformed materials at upper-mantle conditions remains poorly constrained. Here we present electrical anisotropy measurements at high temperatures and quasi-hydrostatic pressures of about three gigapascals on previously deformed olivine aggregates and sheared partially molten rocks. For all samples, electrical conductivity is highest when parallel to the direction of prior deformation. The conductivity of highly sheared olivine samples is ten times greater in the shear direction than for undeformed samples. At temperatures above 900 degrees Celsius, a deformed solid matrix with nearly isotropic melt distribution has an electrical anisotropy factor less than five. To obtain higher electrical anisotropy (up to a factor of 100), we propose an experimentally based model in which layers of sheared olivine are alternated with layers of sheared olivine plus MORB or of pure melt. Conductivities are up to 100 times greater in the shear direction than when perpendicular to the shear direction and reproduce stress-driven alignment of the melt. Our experimental results and the model reproduce mantle conductivity-depth profiles for melt-bearing geological contexts. The field data are best fitted by an electrically anisotropic asthenosphere overlain by an isotropic, high-conductivity lowermost lithosphere. The high conductivity could arise from partial melting associated with localized deformation resulting from differential plate velocities relative to the mantle, with subsequent upward melt percolation from the asthenosphere.

Nature ; 447(7147): 991-4, 2007 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-17581582


A deep-seated melt or fluid layer on top of the 410-km-deep seismic discontinuity in Earth's upper mantle, as proposed in the transition-zone 'water filter' hypothesis, may have significant bearing on mantle dynamics and chemical differentiation. The geophysical detection of such a layer has, however, proved difficult. Magnetotelluric and geomagnetic depth sounding are geophysical methods sensitive to mantle melt. Here we use these methods to search for a distinct structure near 410-km depth. We calculate one-dimensional forward models of the response of electrical conductivity depth profiles, based on mineral physics studies of the effect of incorporating hydrogen in upper-mantle and transition-zone minerals. These models indicate that a melt layer at 410-km depth is consistent with regional magnetotelluric and geomagnetic depth sounding data from the southwestern United States (Tucson). The 410-km-deep melt layer in this model has a conductance of 3.0 x 10(4) S and an estimated thickness of 5-30 km. This is the only regional data set that we have examined for which such a melt layer structure was found, consistent with regional seismic studies. We infer that the hypothesized transition-zone water filter occurs regionally, but that such a layer is unlikely to be a global feature.