Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Environ Int ; 152: 106500, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33714869

RESUMO

Atrazine, a potent herbicide for weeds removal during the growing season, has been widely used in China. It is known to be distributed in aquatic ecosystems with a long half-life, thus presenting a potential risk to species and consumers. This study analyzed the concentrations of degraded atrazine residues in marine organisms (N = 129) including 3 species of mollusks, 2 species of crustaceans, and 15 species of fish from a semi-enclosed bay, Jiaozhou Bay (JZB), adjacent to the Northwest Pacific Ocean in China. The corresponding trophic magnification factors (TMF), bioaccumulation factors (BCFs), and subsequent risks to final consumers were also determined. The results showed an average atrazine concentration of (0.301 ± 0.03) ng g-1 and (0.305 ± 0.04) ng g-1 in fish and invertebrates, respectively. The BCFs were (5.23 ± 1.75) L kg-1 and (5.81 ± 1.31) L kg-1 for fish and invertebrates, respectively. Atrazine was significantly bio-diluted in JZB through the sampled marine organisms with increasing trophic levels, with a TMF value below 1 (P < 0.01). An analysis of the species sensitivity distribution (SSD) predicted that<0.02% of species were exposed to a dissolved concentration of atrazine (57.88 ng L-1) that would lead to detrimental effects, while risk quotients predicted low long-term risks for species in the bay. Finally, people with a diet limited to species from JZB were found to face no associated health risk due to a significantly small daily intake and target hazard quotient of atrazine. The corresponding non-carcinogenic effect showed no significant risk from seafood consumption.

2.
J Hazard Mater ; 414: 125530, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33667800

RESUMO

The spatial distributions of atrazine and six types of metabolites in water, suspended particulate sediment (SPS), and surface sediment in an estuary-to-bay system were analyzed. The water distance of metabolites demonstrated that degradation was more active in coastal zone and the Desisopropylatrazine had the shortest half-distance of 1.6 Km from the river mouth. The dechlorination-hydroxylation metabolites were the dominant pollutants in the bay and the Didealkyl-atrazine (DDA), Deisopropylhydroxy-atrazine (DIHA), and Deethylhydroxy-atrazine (DEHA) had higher concentrations in all three mediums. The DDA had the biggest content (6.58 ng/g) in the coastal sediment. The DIHA was the only pollutant had bigger concentration during the transport, and the others continually degraded with smaller value. The spatial distributions of pollutants in sediment had different patterns in water with SPS. The water-particle phase partition coefficient (Kp) analysis indicated that the partition process was more active in the estuary than the bay, and the metabolites had stronger capacity than atrazine. The correlations between Kp with octanol-water partitioning coefficient showed their physic-chemical properties were the important factors for vertical partition between seawater with sediment. The correlations with marine environmental factors demonstrated that the metabolite type was the direct factor for the redistributions during the transport.

3.
Chemosphere ; 271: 129763, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33736225

RESUMO

Active pharmaceutical ingredients (APIs) are vital to human health and welfare, but following therapeutic use, they may pose a potential ecological risk if discharged into the environment. Today's conventional municipal wastewater treatment plants are not designed to remove APIs specifically, and various techniques, preferably cost-effective and environmentally friendly, are being developed and evaluated. Microalgae-based treatment of wastewater is a sustainable and low-cost approach to remove nutrients and emerging contaminants. In this study, a North Sweden high-rate algal pond (HRAP) using municipal untreated wastewater as medium, was investigated in terms of API distribution and fate. Three six-day batches were prepared during 18 days and a total of 36 APIs were quantified within the HRAP of which 14 were removed from the aqueous phase above 50% and seven removed above 90% of their initial concentrations. Twelve APIs of a hydrophobic nature were mostly associated with the algal biomass that was harvested at the end of each batch. HRAPs treatment successfully removed 69% of studied APIs (25 of 36 studied) in six day time. The distribution of various APIs between the aqueous phase and biomass suggested that several removal mechanisms may occur, such as hydrophobicity driven removal, passive biosorption and active bioaccumulation.


Assuntos
Microalgas , Preparações Farmacêuticas , Biomassa , Humanos , Tanques , Suécia , Eliminação de Resíduos Líquidos , Águas Residuárias
4.
Environ Int ; 146: 106188, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33096467

RESUMO

To gain a better understanding of which pharmaceuticals could pose a risk to fish, 94 pharmaceuticals representing 23 classes were analyzed in blood plasma from wild bream, chub, and roach captured at 18 sites in Germany, the Czech Republic and the UK, respectively. Based on read across from humans, we evaluated the risks of pharmacological effects occurring in the fish for each measured pharmaceutical. Twenty-three compounds were found in fish plasma, with the highest levels measured in chub from the Czech Republic. None of the German bream had detectable levels of pharmaceuticals, whereas roach from the Thames had mostly low concentrations. For two pharmaceuticals, four individual Czech fish had plasma concentrations higher than the concentrations reached in the blood of human patients taking the corresponding medication. For nine additional compounds, determined concentrations exceeded 10% of the corresponding human therapeutic plasma concentration in 12 fish. The majority of the pharmaceuticals where a clear risk for pharmacological effects was identified targets the central nervous system. These include e.g. flupentixol, haloperidol, and risperidone, all of which have the potential to affect fish behavior. In addition to identifying pharmaceuticals of environmental concern, the results emphasize the value of environmental monitoring of internal drug levels in aquatic wildlife, as well as the need for more research to establish concentration-response relationships.

5.
Environ Pollut ; 265(Pt A): 114990, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32585398

RESUMO

Increasing demand for biofuel production and global competition for the use of natural resources are key factors in finding new and environmentally safe routes for methanol production. In the present study, life cycle assessment was used to analyse the potential environmental impact and environmental cost of a novel methanol production process from wood compared to a conventional processes. Both the novel and the conventional process were divided into three stages: pre-treatment, gasification, and syngas cleaning and methanol synthesis. The environmental impacts were assessed and compared using Simapro 9 (ecoinvent 3.5 database) and the ReCiPe 2016 (World-H) midpoint method. The results, expressed per tonne methanol, showed that the impact categories of global warming potential (GWP) and marine ecotoxicity potential were lower in the novel process in comparison to the conventional process (48.2 kg CO2 eq. vs. 63.1 kg CO2 eq., and 4.55 kg 1,4-DCB vs. 6.35 kg 1,4-DCB respectively). However, the novel process had a higher environmental impact in the pre-treatment stage. The results of the sensitivity analysis showed that the GWP of the novel process increased from 48.2 kg CO2 eq. to 216 kg CO2 eq. due to the replacement of Na2CO3 by K2CO3. The human toxicity impact categories showed significant impact on environmental cost. These findings will help relevant industries to reduce their environmental impact and improve the production efficiency of methanol from wood.


Assuntos
Metanol , Madeira , Biocombustíveis , Biomassa , Meio Ambiente , Humanos
6.
Environ Sci Technol ; 54(11): 6468-6485, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32364720

RESUMO

Thousands of halogenated natural products (HNPs) pervade the terrestrial and marine environment. HNPs are generated by biotic and abiotic processes and range in complexity from low molecular mass natural halocarbons (nHCs, mostly halomethanes and haloethanes) to compounds of higher molecular mass which often contain oxygen and/or nitrogen atoms in addition to halogens (hHNPs). nHCs have a key role in regulating tropospheric and stratospheric ozone, while some hHNPs bioaccumulate and have toxic properties similar those of anthropogenic-persistent organic pollutants (POPs). Both chemical classes have common sources: biosynthesis by marine bacteria, phytoplankton, macroalgae, and some invertebrate animals, and both may be similarly impacted by alteration of production and transport pathways in a changing climate. The nHCs scientific community is advanced in investigating sources, atmospheric and oceanic transport, and forecasting climate change impacts through modeling. By contrast, these activities are nascent or nonexistent for hHNPs. The goals of this paper are to (1) review production, sources, distribution, and transport pathways of nHCs and hHNPs through water and air, pointing out areas of commonality, (2) by analogy to nHCs, argue that climate change may alter these factors for hHNPs, and (3) suggest steps to improve linkage between nHCs and hHNPs science to better understand and predict climate change impacts.


Assuntos
Produtos Biológicos , Mudança Climática , Animais
7.
Environ Int ; 139: 105717, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32283357

RESUMO

Riverine sediment can reconstruct the history of organic pollution loads and can provide reliable temporal information for pesticide metabolite dynamics in watershed. Sediment core samples were collected from two riverine sections of a cold watershed base in the presence land use change under agricultural development, and the vertical concentrations of four pesticides (atrazine, prometryn, isoprothiolane, and oxadiazon) and two atrazine metabolites (deisopropyl-atrazine and deethyl-atrazine) were determined by gas chromatography-mass spectrometry. The presence of pesticides and metabolites was detected at different depths (11-17 cm) at 1-cm intervals along the two sediment cores, and the flux was calculated with a constant rate of supply model based on the observed concentrations and 210Pb isotope radioactivity chronology. By comparing the concentrations and fluxes of pesticides between the two sediment sections, significant differences in accumulation under different land-use patterns were found. Redundancy analysis further indicated that temporal watershed farmland variance was the dominant factor for pesticide loading. The lower concentration of atrazine and the higher concentration of the other pesticides in the estuarine sediment was closely related to the decreasing upland in the upstream area and the increase in paddy fields in the downstream area. The analysis of atrazine and the metabolites indicated that atrazine is more likely degraded to deethyl-atrazine and the metabolites have similar migration processes in the sediments, which can easily migrate downward. Moreover, the ratio of metabolites to atrazine showed that atrazine degradation was intensive during the transport process, but the metabolites efficiency was lower in this area due to the cold temperature. The results provide insights for the management of pesticide pollution control in watersheds and the potential effects of low temperature on the degradation of pesticides.


Assuntos
Atrazina , Praguicidas , Poluentes Químicos da Água , Agricultura , Monitoramento Ambiental , Praguicidas/análise , Poluentes Químicos da Água/análise
8.
J Hazard Mater ; 389: 122125, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31978823

RESUMO

The main aim of this study was to explore the effects of climate conditions on the transport and transformation of heavy metals. Sedimentary geochemical analysis and watershed modeling were used to investigate the distinctions between heavy metal pollution under different climate conditions. The results showed that the average concentrations of Cu, Cd, and Pb in sediments of the subtropical watershed (36.64, 0.60, and 133.69 mg/kg, respectively) were higher than those of the temperate watershed (26.58, 0.19, and 23.17 mg/kg, respectively) because of surface runoff-induced heavy metal loadings under higher precipitation. Also, the labile fractions, which mainly originated from anthropogenic sources, showed higher percentages in the subtropical watershed (67.84-91.33%), thereby indicating that the transport of heavy metals was promoted by surface runoff. Moreover, higher percentages of acid-soluble fractions of Cu and Pb (23.55-33.60%) in the subtropical watershed suggested that higher temperatures accelerated the transformation of heavy metal fractions, thus contributing to the transportation of heavy metals. Overall, climate conditions were the dominant factors for the differences between the subtropical and temperate watersheds. The results of this study suggest that the effects of climate conditions on the transport, enrichment, and bioavailability of heavy metals are of great significance. Such effects should therefore be the focus of future studies.

9.
J Hazard Mater ; 384: 121313, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31590083

RESUMO

Under the gradients of salinity and redox, the transportation and distribution of dissolved, particulate, and sedimentary arsenic present differences from estuary to bay. Samples of water, suspended particulate sediment (SPS), and sediment from the Jiaozhou Bay were analyzed. The concentrations of arsenic decreased significantly from the estuaries toward the bay. The sedimentary arsenic mostly existed as hydrous oxide-bound and residual fractions and tended to be attached to smaller particles. Sedimentary particles were more capable of absorbing arsenic than SPS and the capacity increased from the estuaries toward the bay. The spatial distribution of arsenic was impacted by the residual currents, resulting in higher contents of dissolved arsenic in the eastern coastal zone and higher concentrations of sedimentary arsenic in the inner bay. In water, total phosphorus (TP), dissolved organic carbon (DOC), and alkalinity had significant positive correlations with the dissolved arsenic. In sediments, Fe oxides and sediment organic matter (SOM) would promote adsorption of arsenic. The significant correlation between non-residual fractions and enrichment factors of arsenic indicated that the sedimentary arsenic was more likely to originate from anthropogenic sources, mainly impacted by riverine transport from the eastern urban regions and agricultural production in the western farmland.

11.
Chemosphere ; 235: 575-585, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31276870

RESUMO

This study investigated the abatement of a number of antimicrobials frequently detected in municipal wastewater by conventional ozonation and a recently developed ozone-based advanced oxidation process, the electro-peroxone (E-peroxone) process. A synthetic water and a real secondary wastewater effluent were spiked with fourteen antimicrobials, including antibiotics and biocides, and then treated by the two processes. The results show that most of the antibiotics investigated (e.g., ofloxacin, trimethoprim, norfloxacin, and ciprofloxacin) readily react with ozone (O3) and could therefore be efficiently eliminated from the water matrices by direct O3 oxidation during both processes. In contrast, most of the biocides tested in this study (e.g., clotrimazole, pentamidine, bixafen, propiconazole, and fluconazole) were only moderately reactive, or non-reactive, with O3. Therefore, these biocides were removed at considerably lower rate than the antibiotics during the two ozone-based processes, with hydroxyl radical (OH) oxidation playing an important role in their abatement mechanisms. When compared with conventional ozonation, the E-peroxone process is defined by the in situ electrogeneration of hydrogen peroxide, which considerably enhances the transformation of O3 to OH. As a result, the E-peroxone process significantly accelerated the abatement of biocides and required a considerably shorter treatment time to eliminate all of the tested compounds from the water matrices than conventional ozonation. In addition, the E-peroxone process enhanced the contributions of OH fractions to the abatement of moderately ozone reactive benzotriazoles. These results demonstrate that the E-peroxone process holds promise as an effective tertiary treatment option for enhancing the abatement of ozone-resistant antimicrobials in wastewater.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Antibacterianos , Desinfetantes , Peróxido de Hidrogênio , Radical Hidroxila , Oxirredução , Ozônio , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
12.
Environ Int ; 130: 104858, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31212164

RESUMO

In several watersheds, agricultural activities are the cause of pollution, mainly due to the discharge of herbicides. Often, these herbicide plumes are transported to the surrounding bays. Samples of water, suspended particulate sediments (SPSs), and sediments from 37 sites in the Jiaozhou Bay in the western Pacific Ocean were collected in April 2018. The total concentrations of atrazine and acetochlor in these samples were analyzed, that showed different patterns in each sampled area. Atrazine had 2-3 times higher concentrations in coastal areas and bays compared to the estuary, indicating that it had a higher residence time in the marine environment. In contrast, acetochlor concentration decreased with an increase in the depth of seawater. Both the spatial distributions and the vertical concentrations in water, SPS, and sediment proved that these two herbicides had different responses during transportation from the estuary to the bay. Despite the significant difference in concentration of the two herbicides in the water and sediment, their spatially averaged value in SPS was very close, indicating that the particles had saturated sorption capability. The organic carbon normalized partition coefficient (LogKoc) was used to explain the partitioning of the herbicides between water and sediment. The LogKoc difference between herbicides demonstrated that acetochlor was strongly phase partitioned in the coastal and the bay areas, thereby causing similar distributions of acetochlor in the three matrices. Atrazine had a higher LogKoc value in the estuary, which explained its higher concentration in the estuary SPS. The correlation and redundancy analyses both demonstrated that the concentrations of the herbicides in water were sensitive to dissolved organic carbon and dissolved oxygen. The current tides and bathymetry were the critical factors in determining the spatial distribution of herbicides in the water and sediment, resulting in a low herbicide load in the river mouth area.


Assuntos
Atrazina/análise , Baías , Estuários , Herbicidas/análise , Toluidinas/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Sedimentos Geológicos/análise , Movimentos da Água
13.
Environ Sci Process Impacts ; 21(5): 881-892, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31032511

RESUMO

Marine macroalgae are used worldwide for human consumption, animal feed, cosmetics and agriculture. In addition to beneficial nutrients, macroalgae contain halogenated natural products (HNPs), some of which have toxic properties similar to those of well-known anthropogenic contaminants. Sixteen species of red, green and brown macroalgae were collected in 2017-2018 from coastal waters of the northern Baltic Sea, Sweden Atlantic and Norway Atlantic, and analyzed for bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). Target compounds were quantified by gas chromatography-low resolution mass spectrometry (GC-LRMS), with qualitative confirmation in selected species by GC-high resolution mass spectrometry (GC-HRMS). Quantified compounds were 2,4-diBA, 2,4,6-triBA, 2'-MeO-BDE68, 6-MeO-BDE47, and two tribromo-MeO-BDEs and one tetrabromo-MeO-BDE with unknown bromine substituent positions. Semiquantitative results for pentabromo-MeO-BDEs were also obtained for a few species by GC-HRMS. Three extraction methods were compared; soaking in methanol, soaking in methanol-dichloromethane, and blending with mixed solvents. Extraction yields of BAs did not differ significantly (p > 0.05) with the three methods and the two soaking methods gave equivalent yields of MeO-BDEs. Extraction efficiencies of MeO-BDEs were significantly lower using the blend method (p < 0.05). For reasons of simplicity and efficiency, the soaking methods are preferred. Concentrations varied by orders of magnitude among species: ∑2BAs 57 to 57 700 and ∑5MeO-BDEs < 10 to 476 pg g-1 wet weight (ww). Macroalgae standing out with ∑2BAs >1000 pg g-1 ww were Ascophyllum nodosum, Ceramium tenuicorne, Ceramium virgatum, Fucus radicans, Fucus serratus, Fucus vesiculosus, Saccharina latissima, Laminaria digitata, and Acrosiphonia/Spongomorpha sp. Species A. nodosum, C. tenuicorne, Chara virgata, F. radicans and F. vesiculosus (Sweden Atlantic only) had ∑5MeO-BDEs >100 pg g-1 ww. Profiles of individual compounds showed distinct differences among species and locations.


Assuntos
Anisóis/análise , Monitoramento Ambiental/métodos , Éteres Difenil Halogenados/análise , Hidrocarbonetos Bromados/análise , Alga Marinha/química , Poluentes Químicos da Água/análise , Animais , Cromatografia Gasosa-Espectrometria de Massas , Halogenação , Humanos , Noruega , Oceanos e Mares , Suécia
14.
Sci Total Environ ; 659: 283-292, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599347

RESUMO

Sediment cores can reflect diffuse pollution history due to the accumulation of pollutants over time, therefore, the quantitative relationship between the sedimentation flux of pollutants and diffuse loads can identify the historical change. Sediment cores were collected from two river reaches in a small agricultural watershed (143 km2), and the total nitrogen (TN) and total phosphorus (TP) concentrations were determined. The sediments were dated using 210Pb isotope radioactivity and the TN and TP sedimentation flux was calculated with Constant Rate of Supply (CRS) and Constant Initial Concentration (CIC) models. Watershed loss loads were simulated using the Soil and Water Assessment Tool (SWAT) in the same temporal period. As the similar natural condition in the post-depositional period of sediments, a linear regression model was used to analyze the relationship between TN and TP sedimentation flux and the hindcast model data. The TP sedimentation flux showed a clear positive relationship with its simulated load (R2 = 0.600 and 0.664) using the CRS model, and better reflected long-term diffuse pollution loss dynamics than nitrogen. The impacts of land use change on diffuse pollution loading were identified with the combination of sedimentation flux from different reaches and watershed modeling. During the expansion of paddy land in the lower reach, the difference of TP sedimentation flux between upper and lower reaches narrowed, while gap of TN sedimentation flux increased. Base on the lateral correlations of two sections, the sediment concentration of TP was more reliable for the long term diffuse pollution assessment under land development.

15.
Ecotoxicol Environ Saf ; 170: 644-656, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30579165

RESUMO

Eight recently isolated microalgal species from Northern Sweden and the culture collection strain Scenedesmus obliquus RISE (UTEX 417) were tested for their ability to remove 19 pharmaceuticals from growth medium upon cultivation in short light path, flat panel photobioreactors. While the growth of one algal species, Chlorella sorokiniana B1-1, was completely inhibited by the addition of pharmaceuticals, and the one of Scenedesmus sp. B2-2 was strongly inhibited, the other algal strains grew well and produced biomass. In general, lipophilic compounds were removed highly efficient from the culture medium by the microalgae (>70% in average within 2 days). The most lipophilic compounds Biperiden, Trihexyphenidyl, Clomipramine and Amitriptyline significantly accumulated in the biomass of most algal species, with a positive correlation between accumulation and their total biomass content. More persistent in the growth medium were hydrophilic compounds like Caffeine, Fluconazole, Trimetoprim, Codeine, Carbamazepin, Oxazepam and Tramadol, which were detected in amounts of above 60% in average after algal treatment. While Coelastrella sp. 3-4 and Coelastrum astroideum RW10 were most efficient to accumulate certain compounds in their biomass, two algae species, Chlorella vulgaris 13-1 and Chlorella saccharophila RNY, were not only highly efficient in removing all 19 pharmaceuticals from the growth medium within 12 days, at the same time only small amounts of these compounds accumulated in their biomass allowing its further use. Chlorella vulgaris 13-1 was able to remove most compounds within 6 days of growth, while Chlorella saccharophila RNY needed 8-10 days."Wild" Nordic microalgae therefore are able to remove active pharmaceutical ingredients, equally or more efficient than the investigated culture collection strain, thereby demonstrating their possible use in sustainable wastewater reclamation in Nordic conditions.


Assuntos
Chlorella vulgaris/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Preparações Farmacêuticas/análise , Scenedesmus/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biomassa , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/metabolismo , Preparações Farmacêuticas/metabolismo , Fotobiorreatores , Scenedesmus/efeitos dos fármacos , Scenedesmus/metabolismo , Especificidade da Espécie , Suécia , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
16.
Chemosphere ; 218: 493-500, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30497032

RESUMO

Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in herring (Clupea harengus) remain high in several parts of the Baltic Sea, despite declines in PCDD/F emissions since the 1980s. The reasons behind this are not well understood. This study applied a statistical modeling approach where sources of PCDD/Fs that contaminate Baltic biota were quantitatively assessed by analyzing existing datasets. PCDD/F patterns were extracted from a herring dataset using positive matrix factorization (PMF). The extracted biota patterns were transformed into sediment patterns using fish-to-sediment transformation factors, and the resulting patterns were compared with known source PCDD/F patterns. The model distinguished three model patterns, which explained 85% of the data. These patterns were matched to tetra-chlorophenol (TCP), penta-chlorophenol/atmospheric background (PCP/AB), and thermal source patterns, respectively. The thermal source was the largest contributor to toxic equivalents (TEQ) in herring, but the level decreased from 42 ±â€¯9.0 pg TEQ g-1 lipid weight (lw) before year 2000 (pre-2000) to 15 ±â€¯2.4 pg TEQ g-1 lw post-2000, i.e., a decline of around one-third in the original TEQ concentration. The contribution of TCP more than doubled, from 2.1 ±â€¯0.62 pg TEQ g-1 lw to 5.6 ±â€¯1.1 pg TEQ g-1 lw, and the relative contribution of PCP/AB also increased. These increasing trends suggest that, as primary air emissions of PCDD/Fs are managed and levels decline, the impact of TCP and PCP/AB sources on Baltic Sea biota will become more important over time and that PCDD/F-contaminated sites in coastal areas and marine environments require more attention.


Assuntos
Dibenzofuranos Policlorados/análise , Peixes , Dibenzodioxinas Policloradas/análise , Poluentes Químicos da Água/análise , Animais , Clorofenóis/análise , Bases de Dados Factuais , Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Produtos Pesqueiros , Contaminação de Alimentos , Modelos Teóricos , Suécia
17.
Sci Total Environ ; 649: 1117-1123, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308883

RESUMO

Several micropollutants show low removal efficiencies in conventional sewage treatment plants, and therefore enter the aquatic environment. To reduce the levels of micropollutants in sewage effluent, and thereby the effects on biota, a number of extra treatment steps are currently being evaluated. Two such techniques are ozonation and adsorption onto activated carbon. In this study, we investigated the efficiency of Sweden's first full-scale ozonation treatment plant at removing a number of antibiotics, antimycotics and biocides. The effect of adding granular activated carbon (GAC) on a pilot scale and pilot-scale ozonation were also evaluated. The conventional treatment (13,000 PE) with the add-on of full-scale ozonation (0.55 g O3/g Total organic carbon (TOC)) was able to remove most of the studied compounds (>90%), except for benzotriazoles and fluconazole (<50%). Adsorption on GAC on a pilot scale showed a higher removal efficiency than ozonation (>80% for all studied compounds). Three types of GAC were evaluated and shown to have different removal efficiencies. In particular, the GAC with the smallest particle sizes exhibited the highest removal efficiency. The results demonstrate that it is important to select an appropriate type of carbon to achieve the removal goal for specific target compounds.


Assuntos
Antibacterianos/análise , Antifúngicos/análise , Carvão Vegetal/química , Desinfetantes/análise , Ozônio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Adsorção , Tamanho da Partícula , Projetos Piloto , Suécia , Eliminação de Resíduos Líquidos/instrumentação
18.
Front Microbiol ; 9: 2926, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555447

RESUMO

Coastal ecosystems are highly dynamic and can be strongly influenced by climate change, anthropogenic activities (e.g., pollution), and a combination of the two pressures. As a result of climate change, the northern hemisphere is predicted to undergo an increased precipitation regime, leading in turn to higher terrestrial runoff and increased river inflow. This increased runoff will transfer terrestrial dissolved organic matter (tDOM) and anthropogenic contaminants to coastal waters. Such changes can directly influence the resident biology, particularly at the base of the food web, and can influence the partitioning of contaminants and thus their potential impact on the food web. Bacteria have been shown to respond to high tDOM concentration and organic pollutants loads, and could represent the entry of some pollutants into coastal food webs. We carried out a mesocosm experiment to determine the effects of: (1) increased tDOM concentration, (2) organic pollutant exposure, and (3) the combined effect of these two factors, on pelagic bacterial communities. This study showed significant responses in bacterial community composition under the three environmental perturbations tested. The addition of tDOM increased bacterial activity and diversity, while the addition of organic pollutants led to an overall reduction of these parameters, particularly under concurrent elevated tDOM concentration. Furthermore, we identified 33 bacterial taxa contributing to the significant differences observed in community composition, as well as 35 bacterial taxa which responded differently to extended exposure to organic pollutants. These findings point to the potential impact of organic pollutants under future climate change conditions on the basal coastal ecosystem, as well as to the potential utility of natural bacterial communities as efficient indicators of environmental disturbance.

19.
Sci Total Environ ; 640-641: 327-336, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860006

RESUMO

Antimicrobial compounds, such as biocides and antibiotics, are widely used in society with significant quantities of these chemicals ending up in sewage treatment plants (STPs). In this study, mass flows and removal efficiency in different treatment steps at three Swedish STPs were evaluated for eleven different biocides and antibiotics. Mass flows were calculated at eight different locations (incoming wastewater, water after the first sedimentation step, treated effluent, primary sludge, surplus sludge, digested sludge, dewatered digested sludge and reject water). Samples were collected for a total of nine days over three weeks. The STPs were able to remove 53->99% of the antimicrobial compounds and 0-64% were biodegraded on average in the three STPs. Quaternary ammonium compounds were removed from the wastewater >99%, partly through biodegradation, but 38-96% remained in the digested sludge. Chlorhexidine was not biodegraded but was efficiently removed from the wastewater to the sludge. The biological treatment step was the most important step for the degradation of the studied compounds, but also removed several compounds through the surplus sludge. Compounds that were inefficiently removed included benzotriazoles, trimethoprim and fluconazole. The study provides mass flows and removal efficiencies for several compounds that have been seldom studied.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Antibacterianos/análise , Desinfetantes/análise , Esgotos , Suécia , Eliminação de Resíduos Líquidos/estatística & dados numéricos
20.
Sci Total Environ ; 633: 1496-1509, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758901

RESUMO

The consumption of pharmaceuticals worldwide coupled with modest removal efficiencies of sewage treatment plants have resulted in the presence of pharmaceuticals in aquatic systems globally. In this study, we investigated the environmental concentrations of a selection of 93 pharmaceuticals in 43 locations in the Baltic Sea and Skagerrak. The Baltic Sea is vulnerable to anthropogenic activities due to a long turnover time and a sensitive ecosystem in the brackish water. Thirty-nine of 93 pharmaceuticals were detected in at least one sample, with concentrations ranging between 0.01 and 80 ng/L. One of the pharmaceuticals investigated, the anti-epileptic drug carbamazepine, was widespread in coastal and offshore seawaters (present in 37 of 43 samples). In order to predict concentrations of pharmaceuticals in the sub-basins of the Baltic Sea, a mass balance-based grey box model was set up and the persistent, widely used carbamazepine was selected as the model substance. The model was based on hydrological and meteorological sub-basin characteristics, removal data from smaller watersheds and wastewater treatment plants, and statistics relating to population, consumption and excretion rate of carbamazepine in humans. The grey box model predicted average environmental concentrations of carbamazepine in sub-basins with no significant difference from the measured concentrations, amounting to 0.57-3.2 ng/L depending on sub-basin location. In the Baltic Sea, the removal rate of carbamazepine in seawater was estimated to be 6.2 10-9 s-1 based on a calculated half-life time of 3.5 years at 10 °C, which demonstrates the long response time of the environment to measures phasing out persistent or slowly degradable substances such as carbamazepine. Sampling, analysis and grey box modelling were all valuable in describing the presence and removal of carbamazepine in the Baltic Sea.


Assuntos
Carbamazepina/análise , Modelos Químicos , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Preparações Farmacêuticas , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...