Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Proc Natl Acad Sci U S A ; 118(43)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663725


Early identification of atypical infant movement behaviors consistent with underlying neuromotor pathologies can expedite timely enrollment in therapeutic interventions that exploit inherent neuroplasticity to promote recovery. Traditional neuromotor assessments rely on qualitative evaluations performed by specially trained personnel, mostly available in tertiary medical centers or specialized facilities. Such approaches are high in cost, require geographic proximity to advanced healthcare resources, and yield mostly qualitative insight. This paper introduces a simple, low-cost alternative in the form of a technology customized for quantitatively capturing continuous, full-body kinematics of infants during free living conditions at home or in clinical settings while simultaneously recording essential vital signs data. The system consists of a wireless network of small, flexible inertial sensors placed at strategic locations across the body and operated in a wide-bandwidth and time-synchronized fashion. The data serve as the basis for reconstructing three-dimensional motions in avatar form without the need for video recordings and associated privacy concerns, for remote visual assessments by experts. These quantitative measurements can also be presented in graphical format and analyzed with machine-learning techniques, with potential to automate and systematize traditional motor assessments. Clinical implementations with infants at low and at elevated risks for atypical neuromotor development illustrates application of this system in quantitative and semiquantitative assessments of patterns of gross motor skills, along with body temperature, heart rate, and respiratory rate, from long-term and follow-up measurements over a 3-mo period following birth. The engineering aspects are compatible for scaled deployment, with the potential to improve health outcomes for children worldwide via early, pragmatic detection methods.

Adv Mater ; 33(39): e2103857, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34369002


Wireless, skin-integrated devices for continuous, clinical-quality monitoring of vital signs have the potential to greatly improve the care of patients in neonatal and pediatric intensive-care units. These same technologies can also be used in the home, across a broad spectrum of ages, from beginning to end of life. Although miniaturized forms of such devices minimize patient burden and improve compliance, they represent life-threatening choking hazards for infants. A materials strategy is presented here to address this concern. Specifically, composite materials are introduced as soft encapsulating layers and gentle adhesives that release chemical compounds designed to elicit an intense bitter taste when placed in the mouth. Reflexive reactions to this sensation strongly reduce the potential for ingestion, as a safety feature. The materials systems described involve a non-toxic bitterant (denatonium benzoate) as a dopant in an elastomeric (poly(dimethylsiloxane)) or hydrogel matrix. Experimental and computational studies of these composite materials and the kinetics of release of the bitterant define the key properties. Incorporation into various wireless skin-integrated sensors demonstrates their utility in functional systems. This simple strategy offers valuable protective capabilities, with broad practical relevance to the welfare of children monitored with wearable devices.

Adv Healthc Mater ; 10(17): e2100383, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938638


Indwelling arterial lines, the clinical gold standard for continuous blood pressure (BP) monitoring in the pediatric intensive care unit (PICU), have significant drawbacks due to their invasive nature, ischemic risk, and impediment to natural body movement. A noninvasive, wireless, and accurate alternative would greatly improve the quality of patient care. Recently introduced classes of wireless, skin-interfaced devices offer capabilities in continuous, precise monitoring of physiologic waveforms and vital signs in pediatric and neonatal patients, but have not yet been employed for continuous tracking of systolic and diastolic BP-critical for guiding clinical decision-making in the PICU. The results presented here focus on materials and mechanics that optimize the system-level properties of these devices to enhance their reliable use in this context, achieving full compatibility with the range of body sizes, skin types, and sterilization schemes typically encountered in the PICU. Systematic analysis of the data from these devices on 23 pediatric patients, yields derived, noninvasive BP values that can be quantitatively validated against direct recordings from arterial lines. The results from this diverse cohort, including those under pharmacological protocols, suggest that wireless, skin-interfaced devices can, in certain circumstances of practical utility, accurately and continuously monitor BP in the PICU patient population.

Cuidados Críticos , Sinais Vitais , Pressão Sanguínea , Criança , Humanos , Recém-Nascido , Monitorização Fisiológica , Pele
Sci Adv ; 7(20)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33980495


Soft, skin-integrated electronic sensors can provide continuous measurements of diverse physiological parameters, with broad relevance to the future of human health care. Motion artifacts can, however, corrupt the recorded signals, particularly those associated with mechanical signatures of cardiopulmonary processes. Design strategies introduced here address this limitation through differential operation of a matched, time-synchronized pair of high-bandwidth accelerometers located on parts of the anatomy that exhibit strong spatial gradients in motion characteristics. When mounted at a location that spans the suprasternal notch and the sternal manubrium, these dual-sensing devices allow measurements of heart rate and sounds, respiratory activities, body temperature, body orientation, and activity level, along with swallowing, coughing, talking, and related processes, without sensitivity to ambient conditions during routine daily activities, vigorous exercises, intense manual labor, and even swimming. Deployments on patients with COVID-19 allow clinical-grade ambulatory monitoring of the key symptoms of the disease even during rehabilitation protocols.

Acelerometria/instrumentação , Acelerometria/métodos , Eletrocardiografia Ambulatorial/instrumentação , Eletrocardiografia Ambulatorial/métodos , Dispositivos Eletrônicos Vestíveis , Temperatura Corporal , COVID-19 , Exercício Físico/fisiologia , Frequência Cardíaca , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , SARS-CoV-2
Nat Biomed Eng ; 4(2): 148-158, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768002


Skin-mounted soft electronics that incorporate high-bandwidth triaxial accelerometers can capture broad classes of physiologically relevant information, including mechano-acoustic signatures of underlying body processes (such as those measured by a stethoscope) and precision kinematics of core-body motions. Here, we describe a wireless device designed to be conformally placed on the suprasternal notch for the continuous measurement of mechano-acoustic signals, from subtle vibrations of the skin at accelerations of around 10-3 m s-2 to large motions of the entire body at about 10 m s-2, and at frequencies up to around 800 Hz. Because the measurements are a complex superposition of signals that arise from locomotion, body orientation, swallowing, respiration, cardiac activity, vocal-fold vibrations and other sources, we exploited frequency-domain analysis and machine learning to obtain-from human subjects during natural daily activities and exercise-real-time recordings of heart rate, respiration rate, energy intensity and other essential vital signs, as well as talking time and cadence, swallow counts and patterns, and other unconventional biomarkers. We also used the device in sleep laboratories and validated the measurements using polysomnography.

Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Fenômenos Fisiológicos , Tecnologia sem Fio/instrumentação , Clavícula , Desenho de Equipamento , Exercício Físico/fisiologia , Humanos , Processamento de Sinais Assistido por Computador , Fenômenos Fisiológicos da Pele , Sono/fisiologia , Vibração