Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
2.
Theranostics ; 11(3): 1412-1428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391542

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs). Methods: Since the activation and maturation of DCs is controlled by an interconnected signalling network, we deploy an approach that combines RNA sequencing data and systems biology methods to delineate miRNA-based strategies that enhance DC-elicited immune responses. Results: Through RNA sequencing of IKKß-matured DCs that are currently being tested in a clinical trial on therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a network analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as cytokine and interleukin signalling. We employed a network topology-oriented scoring model to rank the miRNAs, analysed their impact on immunogenic potency of DCs, and identified dozens of promising miRNA candidates, with miR-15a and miR-16 as the top ones. The results of our analysis are presented in a database that constitutes a tool to identify DC-relevant miRNA-gene interactions with therapeutic potential (https://www.synmirapy.net/dc-optimization). Conclusions: Our approach enables the systematic analysis and identification of functional miRNA-gene interactions that can be experimentally tested for improving DC immunogenic potency.

3.
Am J Hum Genet ; 107(3): 527-538, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32758447

RESUMO

Generalized pustular psoriasis (GPP) is a severe multi-systemic inflammatory disease characterized by neutrophilic pustulosis and triggered by pro-inflammatory IL-36 cytokines in skin. While 19%-41% of affected individuals harbor bi-allelic mutations in IL36RN, the genetic cause is not known in most cases. To identify and characterize new pathways involved in the pathogenesis of GPP, we performed whole-exome sequencing in 31 individuals with GPP and demonstrated effects of mutations in MPO encoding the neutrophilic enzyme myeloperoxidase (MPO). We discovered eight MPO mutations resulting in MPO -deficiency in neutrophils and monocytes. MPO mutations, primarily those resulting in complete MPO deficiency, cumulatively associated with GPP (p = 1.85E-08; OR = 6.47). The number of mutant MPO alleles significantly differed between 82 affected individuals and >4,900 control subjects (p = 1.04E-09); this effect was stronger when including IL36RN mutations (1.48E-13) and correlated with a younger age of onset (p = 0.0018). The activity of four proteases, previously implicated as activating enzymes of IL-36 precursors, correlated with MPO deficiency. Phorbol-myristate-acetate-induced formation of neutrophil extracellular traps (NETs) was reduced in affected cells (p = 0.015), and phagocytosis assays in MPO-deficient mice and human cells revealed altered neutrophil function and impaired clearance of neutrophils by monocytes (efferocytosis) allowing prolonged neutrophil persistence in inflammatory skin. MPO mutations contribute significantly to GPP's pathogenesis. We implicate MPO as an inflammatory modulator in humans that regulates protease activity and NET formation and modifies efferocytosis. Our findings indicate possible implications for the application of MPO inhibitors in cardiovascular diseases. MPO and affected pathways represent attractive targets for inducing resolution of inflammation in neutrophil-mediated skin diseases.


Assuntos
Inflamação/genética , Interleucinas/genética , Peroxidase/genética , Psoríase/genética , Dermatopatias/genética , Adulto , Animais , Citocinas/genética , Armadilhas Extracelulares/genética , Feminino , Humanos , Inflamação/patologia , Interleucina-1/genética , Interleucinas/metabolismo , Masculino , Camundongos , Mutação/genética , Neutrófilos/metabolismo , Psoríase/patologia , Doenças Raras/enzimologia , Doenças Raras/genética , Doenças Raras/patologia , Pele/enzimologia , Pele/patologia , Dermatopatias/patologia
4.
Eur J Med Genet ; 63(9): 103998, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32622959

RESUMO

Autosomal-recessive spinocerebellar ataxia type 18 (SCAR18) is a rare neurologic disorder. It is caused by bi-allelic aberrations in the GRID2 gene, encoding an ionotropic glutamate receptor. In total, 20 affected individuals with mainly homozygous/compound heterozygous intragenic deletions/duplications, two different missense variants and one nonsense variant in GRID2 have been reported, so far. SCAR18 is characterized by delayed psychomotor development, intellectual disability, severely impaired gait due to cerebellar ataxia, ocular movement abnormalities, and cerebellar atrophy in brain imaging. By trio exome sequencing, we now identified a novel homozygous nonsense variant (c.568C > T; p.Gln190*) in GRID2 in a four year old female from a consanguineous family who presented with a particularly severe manifestation of SCAR18. The girl was born after an uneventful pregnancy and showed early-onset, profoundly delayed psychomotor development with no achieved psychomotor milestones at age 4 years. Additionally, she presented with severe muscular hypotonia, progressive truncal and appendicular ataxia, binocular vertical nystagmus, central hearing loss and incomplete loss of sight. She was dystrophic, interacted only very little and had behavioral anomalies such as eating hair and bruxism. Brain imaging showed cerebellar hypoplasia, extended cerebrospinal fluid spaces and beginning reduction of cerebral volume. Our findings further delineate the mutational and clinical spectrum of GRID2-associated spinocerebellar ataxia type 18 and indicate that homozygous nonsense variants are possibly associated with the severe end of the SCAR18 phenotypic spectrum.

6.
Prenat Diagn ; 39(12): 1136-1147, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31498910

RESUMO

OBJECTIVE: 17q12 microdeletions containing HNF1B and intragenic variants within this gene are associated with variable developmental, endocrine, and renal anomalies, often already noted prenatally as hyperechogenic/cystic kidneys. Here, we describe prenatal and postnatal phenotypes of seven individuals with HNF1B aberrations and compare their clinical and genetic data to those of previous studies. METHODS: Prenatal sequencing and postnatal chromosomal microarray analysis were performed in seven individuals with renal and/or neurodevelopmental phenotypes. We evaluated HNF1B-related clinical features from 82 studies and reclassified 192 reported intragenic HNF1B variants. RESULTS: In a prenatal case, we identified a novel in-frame deletion p.(Gly239del) within the HNF1B DNA-binding domain, a mutational hot spot as demonstrated by spatial clustering analysis and high computational prediction scores. The six postnatally diagnosed individuals harbored 17q12 microdeletions. Literature screening revealed variable reporting of HNF1B-associated clinical traits. Overall, both mutation groups showed a high phenotypic heterogeneity. The reclassification of all previously reported intragenic HNF1B variants provided an up-to-date overview of the mutational spectrum. CONCLUSIONS: We highlight the value of prenatal HNF1B screening in renal developmental diseases. Standardized clinical reporting and systematic classification of HNF1B variants are necessary for a more accurate risk quantification of prenatal and postnatal clinical features, improving genetic counseling and prenatal decision making.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Fator 1-beta Nuclear de Hepatócito/genética , Doenças Renais Císticas/diagnóstico , Análise em Microsséries , Diagnóstico Pré-Natal/métodos , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adulto , Criança , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Estudos de Coortes , Hibridização Genômica Comparativa/métodos , Análise Mutacional de DNA/métodos , Diagnóstico Diferencial , Feminino , Humanos , Recém-Nascido , Doenças Renais Císticas/genética , Masculino , Análise em Microsséries/métodos , Mutação , Gravidez , Síndrome
7.
BMC Cancer ; 19(1): 435, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077186

RESUMO

BACKGROUND: Several subunits of the SWI/SNF chromatin remodeling complex are implicated in both cancer and neurodevelopmental disorders (NDD). Though there is no clinical evidence for an increased tumor risk in individuals with NDDs due to germline mutations in most of these genes so far, this has been repeatedly proposed and discussed. A young woman with NDD due to a de novo mutation in ARID1B now presented with a large renal (> 19 cm in diameter) and multiple hepatic angiomyolipomas (AMLs) but no other signs of tuberous sclerosis complex. METHODS: We analyzed tumor and healthy tissue samples with exome and panel sequencing. RESULTS: Additionally to the previously known, germline ARID1B variant we identified a post-zygotic truncating TSC2 variant in both renal and hepatic AMLs but not in any of the healthy tissues. We did not detect any further, obvious tumor driver events. The identification of a passenger variant in SIPA1L3 in both AMLs points to a common clonal origin. Metastasis of the renal AML into the liver is unlikely on the basis of discordant histopathological features. Our findings therefore point to very low-grade mosaicism for the TSC2 variant, possibly in a yet unknown mesenchymal precursor cell that expanded clonally during tumor development. A possible contribution of the germline ARID1B variant to the tumorigenesis remains unclear but cannot be excluded given the absence of any other evident tumor drivers in the AMLs. CONCLUSION: This unique case highlights the blurred line between tumor genetics and post-zygotic events that can complicate exact molecular diagnoses in patients with rare manifestations. It also demonstrates the relevance of multiple disorders in a single individual, the challenges of detecting low-grade mosaicisms, and the importance of proper diagnosis for treatment and surveillance.


Assuntos
Angiomiolipoma/genética , Deficiência Intelectual/complicações , Neoplasias Renais/genética , Neoplasias Hepáticas/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteínas de Ligação a DNA/genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Deficiência Intelectual/genética , Mosaicismo , Fatores de Transcrição/genética , Sequenciamento Completo do Exoma , Adulto Jovem
8.
J Clin Invest ; 129(7): 2669-2684, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30990796

RESUMO

The polarization of macrophages is regulated by transcription factors such as nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1). In this manuscript, we delineated the role of the transcription factor Fos-related antigen 1 (Fra-1) during macrophage activation and development of arthritis. Network level interaction analysis of microarray data derived from Fra-1- or Fra-2-deficient macrophages revealed a central role of Fra-1, but not of Fra-2 in orchestrating the expression of genes related to wound response, toll-like receptor activation and interleukin signaling. Chromatin-immunoprecipitation (ChIP)-sequencing and standard ChIP analyses of macrophages identified arginase 1 (Arg1) as a target of Fra-1. Luciferase reporter assays revealed that Fra-1 down-regulated Arg1 expression by direct binding to the promoter region. Using macrophage-specific Fra-1- or Fra-2- deficient mice, we observed an enhanced expression and activity of Arg1 and a reduction of arthritis in the absence of Fra-1, but not of Fra-2. This phenotype was reversed by treatment with the arginase inhibitor Nω-hydroxy-nor-L-arginine, while ʟ-arginine supplementation increased arginase activity and alleviated arthritis, supporting the notion that reduced arthritis in macrophage-specific Fra-1-deficient mice resulted from enhanced Arg1 expression and activity. Moreover, patients with active RA showed increased Fra-1 expression in the peripheral blood and elevated Fra-1 protein in synovial macrophages compared to RA patients in remission. In addition, the Fra-1/ARG1 ratio in synovial macrophages was related to RA disease activity. In conclusion, these data suggest that Fra-1 orchestrates the inflammatory state of macrophages by inhibition of Arg1 expression and thereby impedes the resolution of inflammation.


Assuntos
Arginase/biossíntese , Artrite Reumatoide , Regulação Enzimológica da Expressão Gênica , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Membrana Sinovial/metabolismo , Animais , Arginase/genética , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Humanos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/genética , Membrana Sinovial/patologia
9.
Hum Mol Genet ; 28(15): 2531-2548, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30986821

RESUMO

LOXL1 (lysyl oxidase-like 1) has been identified as the major effect locus in pseudoexfoliation (PEX) syndrome, a fibrotic disorder of the extracellular matrix and frequent cause of chronic open-angle glaucoma. However, all known PEX-associated common variants show allele effect reversal in populations of different ancestry, casting doubt on their biological significance. Based on extensive LOXL1 deep sequencing, we report here the identification of a common non-coding sequence variant, rs7173049A>G, located downstream of LOXL1, consistently associated with a decrease in PEX risk (odds ratio, OR = 0.63; P = 6.33 × 10-31) in nine different ethnic populations. We provide experimental evidence for a functional enhancer-like regulatory activity of the genomic region surrounding rs7173049 influencing expression levels of ISLR2 (immunoglobulin superfamily containing leucine-rich repeat protein 2) and STRA6 [stimulated by retinoic acid (RA) receptor 6], apparently mediated by allele-specific binding of the transcription factor thyroid hormone receptor beta. We further show that the protective rs7173049-G allele correlates with increased tissue expression levels of ISLR2 and STRA6 and that both genes are significantly downregulated in tissues of PEX patients together with other key components of the STRA6 receptor-driven RA signaling pathway. siRNA-mediated downregulation of RA signaling induces upregulation of LOXL1 and PEX-associated matrix genes in PEX-relevant cell types. These data indicate that dysregulation of STRA6 and impaired retinoid metabolism are involved in the pathophysiology of PEX syndrome and that the variant rs7173049-G, which represents the first common variant at the broad LOXL1 locus without allele effect reversal, mediates a protective effect through upregulation of STRA6 in ocular tissues.

10.
Eur J Hum Genet ; 27(7): 1061-1071, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30809043

RESUMO

Height is a heritable and highly heterogeneous trait. Short stature affects 3% of the population and in most cases is genetic in origin. After excluding known causes, 67% of affected individuals remain without diagnosis. To identify novel candidate genes for short stature, we performed exome sequencing in 254 unrelated families with short stature of unknown cause and identified variants in 63 candidate genes in 92 (36%) independent families. Based on systematic characterization of variants and functional analysis including expression in chondrocytes, we classified 13 genes as strong candidates. Whereas variants in at least two families were detected for all 13 candidates, two genes had variants in 6 (UBR4) and 8 (LAMA5) families, respectively. To facilitate their characterization, we established a clustered network of 1025 known growth and short stature genes, which yielded 29 significantly enriched clusters, including skeletal system development, appendage development, metabolic processes, and ciliopathy. Eleven of the candidate genes mapped to 21 of these clusters, including CPZ, EDEM3, FBRS, IFT81, KCND1, PLXNA3, RASA3, SLC7A8, UBR4, USP45, and ZFHX3. Fifty additional growth-related candidates we identified await confirmation in other affected families. Our study identifies Mendelian forms of growth retardation as an important component of idiopathic short stature.


Assuntos
Nanismo/genética , Exoma , Herança Multifatorial , Criança , Pré-Escolar , Proteínas do Citoesqueleto/genética , Feminino , Humanos , Lactente , Masculino , Sequenciamento Completo do Exoma
11.
Nature ; 566(7744): 344-349, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700907

RESUMO

Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs.


Assuntos
Diferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Epigênese Genética , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Transativadores/antagonistas & inibidores
13.
Orphanet J Rare Dis ; 14(1): 38, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744660

RESUMO

BACKGROUND: The TUBA1A-associated tubulinopathy is clinically heterogeneous with brain malformations, microcephaly, developmental delay and epilepsy being the main clinical features. It is an autosomal dominant disorder mostly caused by de novo variants in TUBA1A. RESULTS: In three individuals with developmental delay we identified heterozygous de novo missense variants in TUBA1A using exome sequencing. While the c.1307G > A, p.(Gly436Asp) variant was novel, the two variants c.518C > T, p.(Pro173Leu) and c.641G > A, p.(Arg214His) were previously described. We compared the variable phenotype observed in these individuals with a carefully conducted review of the current literature and identified 166 individuals, 146 born and 20 fetuses with a TUBA1A variant. In 107 cases with available clinical information we standardized the reported phenotypes according to the Human Phenotype Ontology. The most commonly reported features were developmental delay (98%), anomalies of the corpus callosum (96%), microcephaly (76%) and lissencephaly (agyria-pachygyria) (70%), although reporting was incomplete in the different studies. We identified a total of 121 specific variants, including 15 recurrent ones. Missense variants cluster in the C-terminal region around the most commonly affected amino acid position Arg402 (13.3%). In a three-dimensional protein model, 38.6% of all disease-causing variants including those in the C-terminal region are predicted to affect the binding of microtubule-associated proteins or motor proteins. Genotype-phenotype analysis for recurrent variants showed an overrepresentation of certain clinical features. However, individuals with these variants are often reported in the same publication. CONCLUSIONS: With 166 individuals, we present the most comprehensive phenotypic and genotypic standardized synopsis for clinical interpretation of TUBA1A variants. Despite this considerable number, a detailed genotype-phenotype characterization is limited by large inter-study variability in reporting.


Assuntos
Tubulina (Proteína)/genética , Adolescente , Criança , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Feminino , Genótipo , Humanos , Lisencefalia/genética , Lisencefalia/patologia , Masculino , Microcefalia/genética , Microcefalia/patologia , Mutação de Sentido Incorreto/genética , Fenótipo
14.
Genet Med ; 21(8): 1790-1796, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30607023

RESUMO

PURPOSE: Identifying and characterizing novel causes of autosomal recessive intellectual disability based on systematic clinical and genetic evaluation, followed by functional experiments. METHODS: Clinical examinations, genome-wide positional mapping, and sequencing were followed by quantitative polymerase chain reaction and western blot of the protein SVBP and its interaction partners. We then knocked down the gene in rat primary hippocampal neurons and evaluated the consequences on synapses. RESULTS: We identified a founder, homozygous stop-gain variant in SVBP (c.82C>T; p.[Gln28*]) in four affected individuals from two independent families with intellectual disability, microcephaly, ataxia, and muscular hypotonia. SVBP encodes a small chaperone protein that transports and stabilizes two angiogenesis regulators, VASH1 and VASH2. The altered protein is unstable and nonfunctional since transfected HeLa cells with mutant SVBP did not reveal evidence for immunoreactive SVBP protein fragments and cotransfection with VASH1 showed a severe reduction of VASH1 in medium and cell lysate. Knocking down Svbp in rat primary hippocampal neurons led to a significant decrease in the number of excitatory synapses. CONCLUSION: SVBP is not only involved in angiogenesis, but also has vital functions in the central nervous system. Biallelic loss-of-function variants in SVBP lead to intellectual disability.


Assuntos
Proteínas de Transporte/genética , Genes Recessivos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Deficiência Intelectual/genética , Proteínas Angiogênicas , Animais , Ataxia/epidemiologia , Ataxia/genética , Ataxia/patologia , Proteínas de Ciclo Celular , Feminino , Genótipo , Células HeLa , Homozigoto , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Mutação com Perda de Função/genética , Masculino , Microcefalia/epidemiologia , Microcefalia/genética , Microcefalia/patologia , Hipotonia Muscular/epidemiologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Linhagem , Ratos
15.
Int J Cancer ; 145(4): 941-951, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30694527

RESUMO

Two percent of patients with Wilms tumors have a positive family history. In many of these cases the genetic cause remains unresolved. By applying germline exome sequencing in two families with two affected individuals with Wilms tumors, we identified truncating mutations in TRIM28. Subsequent mutational screening of germline and tumor DNA of 269 children affected by Wilms tumor was performed, and revealed seven additional individuals with germline truncating mutations, and one individual with a somatic truncating mutation in TRIM28. TRIM28 encodes a complex scaffold protein involved in many different processes, including gene silencing, DNA repair and maintenance of genomic integrity. Expression studies on mRNA and protein level showed reduction of TRIM28, confirming a loss-of-function effect of the mutations identified. The tumors showed an epithelial-type histology that stained negative for TRIM28 by immunohistochemistry. The tumors were bilateral in six patients, and 10/11 tumors are accompanied by perilobar nephrogenic rests. Exome sequencing on eight tumor DNA samples from six individuals showed loss-of-heterozygosity (LOH) of the TRIM28-locus by mitotic recombination in seven tumors, suggesting that TRIM28 functions as a tumor suppressor gene in Wilms tumor development. Additionally, the tumors showed very few mutations in known Wilms tumor driver genes, suggesting that loss of TRIM28 is the main driver of tumorigenesis. In conclusion, we identified heterozygous germline truncating mutations in TRIM28 in 11 children with mainly epithelial-type Wilms tumors, which become homozygous in tumor tissue. These data establish TRIM28 as a novel Wilms tumor predisposition gene, acting as a tumor suppressor gene by LOH.


Assuntos
Haploinsuficiência/genética , Proteína 28 com Motivo Tripartido/genética , Tumor de Wilms/genética , Carcinogênese/genética , Pré-Escolar , DNA de Neoplasias/genética , Feminino , Genes do Tumor de Wilms/fisiologia , Predisposição Genética para Doença/genética , Genótipo , Mutação em Linhagem Germinativa/genética , Heterozigoto , Humanos , Lactente , Neoplasias Renais/genética , Mutação com Perda de Função/genética , Perda de Heterozigosidade/genética , Masculino , Sequenciamento Completo do Exoma/métodos
16.
Am J Med Genet A ; 179(1): 50-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30548383

RESUMO

Biallelic variants in the AEBP1 gene cause a novel autosomal-recessive connective tissue disorder (CTD) reminiscent of Ehlers-Danlos Syndrome (EDS). The four previously reported individuals show considerable clinical variability. Unbiased high-throughput sequencing enables the rapid identification of additional cases for such rare entities. We identified the homozygous nonsense variant c.917dup, p.Tyr306* in AEBP1 using clinical exome sequencing in a female individual with previously unsolved CTD. Segregation testing confirmed homozygosity in the clinically affected brother and heterozygous carrier status in the healthy mother. Chromosomal microarray showed that the variant lies in a run of homozygosity, suggesting a common origin of this genomic segment. RT-PCR analysis in the mother revealed a monoallelic expression of the normal transcript supporting a nonsense-mediated mRNA decay and functional nullizygosity as disease mechanism. We describe two individuals from a fourth family with AEBP1-associated CTD. Our results further verify that autosomal-recessive inherited LOF variants in the AEBP1 gene cause clinical features of different EDS subtypes, but also of the marfanoid spectrum. As identification of further individuals is necessary to inform the clinical characterization, we stress the added value of exome sequencing for such rare diseases.


Assuntos
Carboxipeptidases/genética , Doenças do Tecido Conjuntivo/genética , Síndrome de Ehlers-Danlos/genética , Predisposição Genética para Doença , Proteínas Repressoras/genética , Adulto , Códon sem Sentido/genética , Tecido Conjuntivo/metabolismo , Tecido Conjuntivo/patologia , Doenças do Tecido Conjuntivo/fisiopatologia , Síndrome de Ehlers-Danlos/fisiopatologia , Exoma/genética , Feminino , Genes Recessivos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Mutação com Perda de Função/genética , Masculino , Linhagem , Fenótipo , Irmãos
17.
Sci Rep ; 8(1): 17201, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464253

RESUMO

Genetic integrity of induced pluripotent stem cells (iPSCs) is essential for their validity as disease models and for potential therapeutic use. We describe the comprehensive analysis in the ForIPS consortium: an iPSC collection from donors with neurological diseases and healthy controls. Characterization included pluripotency confirmation, fingerprinting, conventional and molecular karyotyping in all lines. In the majority, somatic copy number variants (CNVs) were identified. A subset with available matched donor DNA was selected for comparative exome sequencing. We identified single nucleotide variants (SNVs) at different allelic frequencies in each clone with high variability in mutational load. Low frequencies of variants in parental fibroblasts highlight the importance of germline samples. Somatic variant number was independent from reprogramming, cell type and passage. Comparison with disease genes and prediction scores suggest biological relevance for some variants. We show that high-throughput sequencing has value beyond SNV detection and the requirement to individually evaluate each clone.


Assuntos
Bancos de Espécimes Biológicos/normas , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Perfil Genético , Células-Tronco Pluripotentes Induzidas/fisiologia , Impressões Digitais de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariotipagem , Análise de Sequência de DNA
18.
Am J Med Genet A ; 176(12): 2872-2876, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30450806

RESUMO

Mutations in BCOR cause X-linked dominant and X-linked recessive forms of syndromic microphthalmia. By exome sequencing, we identified the recurrent BCOR mutation p.Pro85Leu in two brothers and their unaffected mother. While the older brother's phenotype completely fits the described phenotypic spectrum of X-linked recessive BCOR-associated Lenz microphthalmia syndrome, the younger brother showed developmental delay, microcephaly, and skeletal anomalies, but not the key feature of microphthalmia. In contrast to the previously published families, our findings demonstrate a large variability of BCOR-associated, syndromic phenotypes, indicating incomplete penetrance of p.Pro85Leu with regards to microphthalmia in males.


Assuntos
Substituição de Aminoácidos , Anoftalmia/diagnóstico , Anoftalmia/genética , Microftalmia/diagnóstico , Microftalmia/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Análise Mutacional de DNA , Diagnóstico Diferencial , Feminino , Genes Ligados ao Cromossomo X , Humanos , Imagem por Ressonância Magnética , Masculino , Linhagem , Penetrância , Fenótipo
19.
BMC Cancer ; 18(1): 926, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30257646

RESUMO

BACKGROUND: Breast cancer is the most common cancer in women. 12-15% of all tumors are triple-negative breast cancers (TNBC). So far, TNBC has been mainly associated with mutations in BRCA1. The presence of other predisposing genes seems likely since DNA damage repair is a complex process that involves several genes. Therefore we investigated if mutations in other genes are involved in cancer development and whether TNBC is an additional indicator of mutational status besides family history and age of onset. METHODS: We performed a germline panel-based screening of 10 high and low-moderate penetrance breast cancer susceptibility genes (BRCA1, BRCA2, ATM, CDH1, CHEK2, NBN, PALB2, RAD51C, RAD51D and TP53) in 229 consecutive individuals affected with TNBC unselected for age, family history or bilateral disease. Within this cohort we compared the number of mutation carriers fulfilling clinical selection criteria with the total number of carriers identified. RESULTS: Age at diagnosis ranged from 23 to 80 years with an average age of 50.2 years. In 57 women (24.9%) we detected a pathogenic mutation, with a higher frequency (29.7%) in the group manifesting cancer before 60 years. Deleterious BRCA1 mutations occurred in 14.8% of TNBC patients. These were predominantly recurrent frameshift mutations (24/34, 70.6%). Deleterious BRCA2 mutations occurred in 5.7% of patients, all but one (c.1813dupA) being unique. While no mutations were found in CDH1 and TP53, 10 mutations were detected in one of the six other predisposition genes. Remarkably, neither of the ATM, RAD51D, CHEK2 and PALB2 mutation carriers had a family history. Furthermore, patients with non-BRCA1/2 mutations were not significantly younger than mutation negative women (p = 0.3341). Most importantly, among the 57 mutation carriers, ten (17.5%) would be missed using current clinical testing criteria including five (8%) with BRCA1/2 mutations. CONCLUSIONS: In summary, our data confirm and expand previous studies of a high frequency of germline mutations in genes associated with ineffective repair of DNA damage in women with TNBCs. Neither age of onset, contralateral disease nor family history were able to discern all mutation positive individuals. Therefore, TNBC should be considered as an additional criterion for panel based genetic testing.


Assuntos
Análise Mutacional de DNA/métodos , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Seleção de Pacientes , Penetrância , Análise de Sequência de DNA , Adulto Jovem
20.
Ann Rheum Dis ; 77(10): 1454-1462, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29967194

RESUMO

OBJECTIVE: In anti-citrullinated protein antibody positive rheumatoid arthritis (ACPA-positive RA), a particular subset of HLA-DRB1 alleles, called shared epitope (SE) alleles, is a highly influential genetic risk factor. Here, we investigated whether non-HLA single nucleotide polymorphisms (SNP), conferring low disease risk on their own, interact with SE alleles more frequently than expected by chance and if such genetic interactions influence the HLA-DRB1 SE effect concerning risk to ACPA-positive RA. METHODS: We computed the attributable proportion (AP) due to additive interaction at genome-wide level for two independent ACPA-positive RA cohorts: the Swedish epidemiological investigation of rheumatoid arthritis (EIRA) and the North American rheumatoid arthritis consortium (NARAC). Then, we tested for differences in the AP p value distributions observed for two groups of SNPs, non-associated and associated with disease. We also evaluated whether the SNPs in interaction with HLA-DRB1 were cis-eQTLs in the SE alleles context in peripheral blood mononuclear cells from patients with ACPA-positive RA (SE-eQTLs). RESULTS: We found a strong enrichment of significant interactions (AP p<0.05) between the HLA-DRB1 SE alleles and the group of SNPs associated with ACPA-positive RA in both cohorts (Kolmogorov-Smirnov test D=0.35 for EIRA and D=0.25 for NARAC, p<2.2e-16 for both). Interestingly, 564 out of 1492 SNPs in consistent interaction for both cohorts were significant SE-eQTLs. Finally, we observed that the effect size of HLA-DRB1 SE alleles for disease decreases from 5.2 to 2.5 after removal of the risk alleles of the two top interacting SNPs (rs2476601 and rs10739581). CONCLUSION: Our data demonstrate that there are massive genetic interactions between the HLA-DRB1 SE alleles and non-HLA genetic variants in ACPA-positive RA.


Assuntos
Alelos , Artrite Reumatoide/genética , Epistasia Genética/genética , Predisposição Genética para Doença/genética , Cadeias HLA-DRB1/genética , Anticorpos Anti-Proteína Citrulinada/genética , Anticorpos Anti-Proteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Estudos de Coortes , Epistasia Genética/imunologia , Epitopos/genética , Epitopos/imunologia , Feminino , Cadeias HLA-DRB1/imunologia , Humanos , Masculino , América do Norte , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA