Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 14: 27-41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021089

RESUMO

Background: Naproxen (NP) is a non-steroidal anti-inflammatory drug with poor aqueous solubility and low oral bioavailability, which may lead to therapeutic failure. NP causes crucial GIT irritation, bleeding, and peptic and duodenal ulcers. Purpose of the study: This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability. Materials and methods: NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation. Results: The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 µm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed. Conclusion: The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.

2.
J Photochem Photobiol B ; 202: 111718, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31790883

RESUMO

Metallic nanoparticles were extensively examined to explore their impending exploitations over pharmaceutical purposes. Current work attempting to explores the cytotoxic capacity of zinc oxide (ZnO) nanoparticles besides to human melanoma cell line (A375). Viability of cells was resoluted, and the promising cytotoxicity potential was exhibited by zinc oxide nanoparticles. Cellular adhesion and morphology was determined by propidium iodide assay. Characterization studies like UV-Spectroscopy, X-ray diffraction (XRD) investigation, transmission electron microscope (TEM), energy dispersive X-ray (EDX) Spec, and Fourier transform infrared (FT-IR) examination confirms the accessibility of measurement, form and volume. The mRNA expression of apoptotic genes like caspase 3, 8 and 9 was elevated followed by the exposure to ZnO nanoparticles and it was narrowly proved that ZnO nanoparticles stimulates the apoptotic cell necrosis at the transcriptional stage. Cardiospermum halicacabum down regulated the apoptotic gene expressions. Reactive oxygen species (ROS) accumulation was augmented at concentration reliant mode, that changed normalize numerous indicator pathways and manipulate the kinetic cellular actions. ZnO nanoparticle synthesized Cardiospermum halicacabum might persuades programmed cell necrosis via elevated ROS levels in cells. CH-ZnONPs was further stimulates the markers of apoptosis and aggravates necrosis of cancerous cells, toxicity to cells, and accretion of ROS. With sourced on above whole data, this might accomplished that CH-ZnONPs amalgamated Cardiospermum halicacabum appreciably possessed a toxicity to human melanoma cells (A375) via provoking the apoptotic cell necrosis, entailed feasible efficacy of CH-ZnONPs besides malignancy management.


Assuntos
Antineoplásicos/síntese química , Apoptose , Nanopartículas Metálicas/química , Sapindaceae/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Química Verde , Humanos , Melanoma/metabolismo , Melanoma/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sapindaceae/metabolismo , Óxido de Zinco/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-31827560

RESUMO

Background: Rosmarinus officinalis (R. officinalis) is a medicinal plant called rosemary, largely used in the Mediterranean diet for many decades ago. Objective: The aim of the present study was to investigate the polyphenolic content, the antioxidant activity, and the antiproliferative effect against human prostate cancer cell lines (LNCaP) of carnosol and carnosic acid as bioactive compounds contained in R. officinalis growing in Morocco. Materials and Methods: Polyphenolic content of R. officinalis ethanolic extract was studied using colorimetric assay. Carnosol and carnosic acid contained in R. officinalis extract were quantified using high-performance liquid chromatography (HPLC). The antiproliferative effect of the studied extracts on LNCaP was evaluated by WST-1 bioassay, and the antioxidant activity was assessed using DPPH assay. Results: The extracts of R. officinalis showed an important polyphenolic content ranging from 74.15 µg·GAE/mg to 146.63 µg·GAE/mg. The percentage of carnosol and carnosic acid in rosemary crops ranges from 11.7 to 17.3% and 1.09% to 3%, respectively. The extracts of R. officinalis exhibited a promoting antioxidant activity with IC50 ranging from 0.236 mg/mL to 0.176 mg/mL. Regarding the antiproliferative effect, the WST-1 assay revealed that all the tested extracts reduced notably the cell viability with IC50 values ranging from 14.15 to 15. 04 µg/mL. Conclusion: In the current work, carnosol and carnosic acid exhibit antioxidant and antiproliferative activities in a concentration-dependent manner.

4.
Drug Des Devel Ther ; 13: 4185-4194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849450

RESUMO

Purpose: The current work was designed to synthesize a bioactive derivative of succinimide and evaluate it for anti-Alzheimer, anticancer and anti-diabetic potentials. Methods: The compound was synthesized by Michael addition of butyraldehyde with N-phenylmaleimide. The synthesized compound was screened for biological potentials including anti-cholinesterase, in-vitro anti-diabetic, antioxidant and anthelmintic potentials. The anti-cholinesterase potential was evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), anti-diabetic potential against α-glucosidase, antioxidant potential against ABTS, DPPH and H2O2 and anthelmintic potential against Perethima posthuma and Ascaridia galli respectively. Results: The compound demonstrated significant AChE and BChE inhibition i.e., 71.34±1.92 and 73.42 ±1.92 at the concentration of 1000 µg/mL respectively. Other dilutions exhibited concentration-dependent inhibitory activity against both enzymes. In the MTT assay, the newly synthesized compound was found active against all of the cell lines viz, HCT-116, MDA-MB231, NIH/3T3 and MCF-7 and the highest cytotoxicity potential was observed against the colon cancer cell line (HCT-116) with an IC50 value of 78 µg/mL exhibiting its highest potential. Moreover, the compound exhibited prominent α-glucosidase inhibitory potentials (79.86±2.54% at 1000 µg/mL) with IC50 value of 156.23 µg/mL. Further, our test compound exhibited considerable scavenging activity against DPPH, ABTS and H2O2 free radicals with percent inhibitions of 75.84±1.58, 72.85±1.17 and 54.82±1.82 and IC50 values of 84.36, 139.74 and 752.21 µg/mL respectively. Our test sample exhibited significant anthelmintic potentials. It demonstrated significant paralysis and death of the test worms in an unbelievably short time in comparison with albendazole. Conclusion: Going into the detail of all observations, it may be deduced that the newly synthesized succinimide derivative could be an important drug candidate against neurodegenerative disorders like Alzheimer's disease, cancer, diabetes mellitus and worms. Further detailed studies in animal models are required for in-vivo analysis of the compound.

5.
Drug Des Devel Ther ; 13: 4195-4205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849451

RESUMO

Background: Cancer is one of the chronic health conditions worldwide. Various therapeutically active compounds from medicinal plants were the current focus of this research in order to uncover a treatment regimen for cancer. Anchusa arvensis (A. anchusa) (L.) M.Bieb. contains many biologically active compounds. Methods: In the current study, new ester 3-hydroxyoctyl -5- trans-docosenoate (compound-1) was isolated from the chloroform soluble fraction of A. anchusa using column chromatography. Using MTT assay, the anticancer effect of the compound was determined in human hepatocellular carcinoma cells (HepG-2) compared with normal epithelial cell line (Vero). DPPH and ABTS radical scavenging assays were performed to assess the antioxidant potential. The Molecular Operating Environment (MOE-2016) tool was used against tyrosine kinase. Results: The structure of the compound was elucidated based on IR, EI, and NMR spectroscopy technique. It exhibited a considerable cytotoxic effect against HepG-2 cell lines with IC50 value of 6.50 ± 0.70 µg/mL in comparison to positive control (doxorubicin) which showed IC50 value of 1.3±0.21 µg/mL. The compound did not show a cytotoxic effect against normal epithelial cell line (Vero). The compound also exhibited significant DPHH scavenging ability with IC50 value of 12 ± 0.80 µg/mL, whereas ascorbic acid, used as positive control, demonstrated activity with IC50 = 05 ± 0.15 µg/mL. Similarly, it showed ABTS radical scavenging ability (IC50 = 130 ± 0.20 µg/mL) compared with the value obtained for ascorbic acid (06 ± 0.85 µg/mL). In docking studies using MOE-2016 tool, it was observed that compound-1 was highly bound to tyrosine kinase by having two hydrogen bonds at the hinge region. This good bonding network by the compound might be one of the reasons for showing significant activity against this enzyme. Conclusion: Our findings led to the isolation of a new compound from A. anchusa which has significant cytotoxic activity against HepG-2 cell lines with marked antioxidant potential.

6.
J Photochem Photobiol B ; 201: 111643, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31698218

RESUMO

Diabetes is a major emerging health consequence across the world which directly associated with the obesity. Contemporary anti-diabetic drugs have numeral limitations, and investigation of herbal remedies for diabetes give novel guide for the expansion of new drugs that can be used as harmonizing to present anti-diabetic allopathic medications. Gold nanoparticles (AuNPs) of 21 nm have been formerly well portrayed in vitro for their capability to intend active uptake in cell. Our present study was dealing with the synthesis of gold nanoparticles by means of Smilax glabra rhizome amend the anti-obesity constraints in high-fat diet by streptozotocin provoked obese diabetes in rat model. Characterization studies like UV -Spectroscopy, XRD analysis, SEM, TEM microscopy, Energy Dispersive X-Ray Spectroscopy, and FT-IR investigation confirms the availability of dimension, shape and size. Biochemical parameters like blood glucose and insulin sufferance and its release, lipid profile, aterogenic & coronary index, liver markers, inflammatory markers, hormones like leptin, resistin, adiponectin indicates the therapeutic effect of gold nanoparticles harvested from Smilax glabra on obese and diabetic rats. Histopathological examinations displayed the disturbed internal structures of obese and diabetic rats liver and heart tissues. Whereas, treatment with gold nanoparticles synthesized from Smilax glabra restored the internal membrane, nuclei and cytoplasm. All these findings confirmed the anti-obesity and anti-diabetic effect of synthesized gold nanoparticles from Smilax glabra.


Assuntos
Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica , Ouro/química , Nanopartículas Metálicas/química , Smilax/química , Animais , Glicemia/análise , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Coração/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/toxicidade , Miocárdio/metabolismo , Miocárdio/patologia , Extratos Vegetais/química , Ratos , Ratos Wistar , Rizoma/química , Rizoma/metabolismo , Smilax/metabolismo , Estreptozocina/toxicidade
7.
J Photochem Photobiol B ; 201: 111657, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31706085

RESUMO

Parkinson's disease (PD) is a general neurodegenerative disorder which largely has an effect on the society of the aged populations. PD is distinguishedwith loss of dopaminergic (DA) neurons in the substantia nigra. The exceptional properties of gold nanoparticles (AuNPs) have fascinated great attention in biomedical applications. In this present study, we explored theprospective beneficial effects of AuNPs synthesized from Cinnamomum verum on PD. PD rat models were established through MPTP injection treatment and AuNPs was administered. Administration of AuNPs reduces effect of MPTP-induced oxidative stress and motor abnormalities observed in PD rats. In addition ELISA analysis demonstrated that AuNPs treatment significantly attenuates Tumor Necrosis Factor-α (TNF-α), Interleukin-1ß (IL-1ß) and Interleukin-6 (IL-6) expression levels. Consequently, we investigated TLR/NF-κB pathway to examine the function of AuNPs on MPTP- induced PD rats. We found that AuNPs suppressed the alterations in the pathway of TLR/NF-κB associated molecules in MPTP stimulated PD rats. Hence, our results suggest that AuNPs attenuates MPTP introduced motor disorders, oxidative stress, activated inflammatory cytokines and activated TLR/NF-κB signaling in PD rats. In conclusion, AuNPs ease PD symptoms by the inhibition of TLR/NF-κB signaling pathway and recommend promise approach in the treatment of neurodegenerative diseases such as PD.


Assuntos
Cinnamomum zeylanicum/química , Ouro/química , Intoxicação por MPTP/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Animais , Cinnamomum zeylanicum/metabolismo , Citocinas/metabolismo , Química Verde , Intoxicação por MPTP/patologia , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo
8.
Drug Des Devel Ther ; 13: 3029-3036, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692531

RESUMO

Background: Traditionally, Grewia optiva is widely used for the treatment of many diseases like dysentery, fever, typhoid, diarrhea, eczema, smallpox, malaria and cough. Methods: Shade-dried roots of G. optiva were extracted with methanol. Based on HPLC results, chloroform and ethyl acetate fractions were subjected to silica column isolation and four compounds: glutaric acid (V), 3,5 dihydroxy phenyl acrylic acid (VI), (2,5 dihydroxy phenyl) 3',6',8'-trihydroxyl-4H chromen-4'-one (VII) and hexanedioic acid (VIII) were isolated in pure form. Ellman's assay was used to determine the anticholinesterase potential of isolated compounds while their antioxidant potential was estimated by DPPH and ABTS scavenging assays. Results: Amongst the isolated compounds, VI and VII exhibited excellent percent inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) (83.23±1.11, 82.72±2.20 and 82.11±2.11, 82.23±1.21, respectively, at 1000 µg/mL) with IC50 of 76, 90, 78 and 92 µg/mL, respectively. Highest percent radicals scavenging against DPPH and ABTS (87.41±1.20 and 86.13±2.31) with IC50 of 64 and 65 µg/mL, respectively, were observed for compound VII. Molecular docking studies also supported the binding of compound VI and VII with the target enzyme. The para-hydroxyl group of the phenolic moiety is formed hydrogen bonds with the active site water molecule and the side chain carbonyl and hydroxyl residues of enzyme. Conclusion: The isolated compounds inhibited the DPPH and ABTS-free radicals, and AChE and BChE enzymes. It was concluded that these compounds could be used in relieving the oxidative stress and pathological symptoms associated with excessive hydrolysis of acetyl and butyryl choline. The results of the study were supported by docking studies for compounds VI and VII.

9.
Drug Des Devel Ther ; 13: 3485-3495, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31631973

RESUMO

Background: In this study, 2 symmetrical and 3 unsymmetrical thioureas were synthesized to evaluate their antioxidant, antibacterial, antidiabetic, and anticholinesterase potentials. Methods: The symmetrical thioureas were synthesized in aqueous media in the presence of sunlight, using amines and CS2 as starting material. The unsymmetrical thioureas were synthesized using amines as a nucleophile to attack the phenyl isothiocyanate (electrophile). The structures of synthesized compounds were confirmed through H1 NMR. The antioxidant potential was determined using DPPH and ABTS assays. The inhibition of glucose-6-phosphatase, alpha amylase, and alpha glucosidase by synthesized compounds was used as an indication of antidiabetic potential. Anticholinesterase potential was determined from the inhibition of acetylcholinesterase and butyrylcholinesterase by the synthesized compounds. Results: The highest inhibition of glucose-6-phosphatase was shown by compound V (03.12 mg of phosphate released). Alpha amylase was most potently inhibited by compound IV with IC50 value of 62 µg/mL while alpha glucosidase by compound III with IC50 value of 75 µg/mL. The enzymes, acetylcholinesterase, and butyrylcholinesterase were potently inhibited by compound III with IC50 of 63 µg/mL and 80 µg/mL respectively. Against DPPH free radical, compound IV was more potent (IC50 = 64 µg/mL) while ABTS was more potently scavenged by compound I with IC50 of 66 µg/mL. The antibacterial spectrum of synthesized compounds was determined against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Agrobacterium tumefaction and Proteus vulgaris). Compound I and compound II showed maximum activity against A. tumefaction with MIC values of 4.02 and 4.04 µg/mL respectively. Against P. vulgaris, compound V was more active (MIC = 8.94 µg/mL) while against S. aureus, compound IV was more potent with MIC of 4.03 µg/mL. Conclusion: From the results, it was concluded that these compounds could be used as antibacterial, antioxidant, and antidiabetic agents. However, further in vivo studies are needed to determine the toxicological effect of these compounds in living bodies. The compounds also have potential to treat neurodegenerative diseases.

10.
Int J Nanomedicine ; 14: 6287-6296, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496686

RESUMO

Purpose: We aimed to enhance the solubility, dissolution rate, oral bioavailability, and α-glucosidase inhibition of glimepiride (Glm) by fabricating its nanosuspension using a precipitation-ultrasonication approach. Methods: Glm nanosuspensions were fabricated using optimized processing conditions. Characterization of Glm was performed using Malvern Zetasizer, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry, and powder X-ray diffraction. Minimum particle size and polydispersity index (PDI) values were found to be 152.4±2.42 nm and 0.23±0.01, respectively, using hydroxypropyl methylcellulose: 6 cPs, 1% w/v, polyvinylpyrrolidone K30 1% w/v, and sodium lauryl sulfate 0.12% w/v, keeping ultrasonication power input at 400 W, with 15 minutes' processing at 3-second pauses. In vivo oral bioavailability was assessed using rabbits as a model. Results: The saturation solubility of the Glm nanosuspensions was substantially enhanced 3.14-fold and 5.77-fold compared to unprocessed drug in stabilizer solution and unprocessed active pharmaceutical ingredient. Also, the dissolution rate of the nanosuspensions ws substantially boosted when compared to the marketed formulation and unprocessed drug candidate. The results showed that >85% of Glm nanosuspensions dissolved in the first 10 minutes compared to 10.17% of unprocessed Glm), 42.19% of microsuspensions, and 19.94% of marketed tablets. In-vivo studies conducted in animals, i.e. rabbits, demonstrated that maximum concentration and AUC0-24 with oral dosing were twofold (5 mg/kg) and 1.74-fold (2.5 mg/kg) and 1.80-fold (5 mg/kg) and 1.63-fold (2.5 mg/kg), respectively, and compared with the unprocessed drug formulation. In-vitro α-glucosidase inhibition results showed that fabricated nanosuspensions had a pronounced effect compared to unprocessed drug. Conclusion: The optimized batch fabricated by ultrasonication-assisted precipitation can be useful in boosting oral bioavailability, which may be accredited to enhanced solubility and dissolution rate of Glm, ultimately resulting in its faster rate of absorption due to nanonization.


Assuntos
Precipitação Química , Inibidores de Glicosídeo Hidrolases/farmacologia , Nanopartículas/química , Compostos de Sulfonilureia/farmacologia , Ultrassom , alfa-Glucosidases/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Derivados da Hipromelose/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Coelhos , Solubilidade , Compostos de Sulfonilureia/administração & dosagem , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacocinética , Suspensões , Difração de Raios X
11.
Molecules ; 24(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491967

RESUMO

Alzheimer's disease (AD) is a widespread dynamic neurodegenerative malady. Its etiology is still not clear. One of the foremost pathological features is the extracellular deposits of Amyloid-beta (Aß) peptides in senile plaques. The interaction of Aß and the receptor for advanced glycation end products at the blood-brain barrier is also observed in AD, which not only causes the neurovascular anxiety and articulation of proinflammatory cytokines, but also directs reduction of cerebral bloodstream by upgrading the emission of endothelin-1 to induce vasoconstriction. In this process, RAGE is deemed responsible for the influx of Aß into the brain through BBB. In the current study, we predicted the interaction potential of the natural compounds vincamine, ajmalicine and emetine with the Aß peptide concerned in the treatment of AD against the standard control, curcumin, to validate the Aß peptide-compounds results. Protein-protein interaction studies have also been carried out to see their potential to inhibit the binding process of Aß and RAGE. Moreover, the current study verifies that ligands are more capable inhibitors of a selected target compared to positive control with reference to ΔG values. The inhibition of Aß and its interaction with RAGE may be valuable in proposing the next round of lead compounds for effective Alzheimer's disease treatment.


Assuntos
Peptídeos beta-Amiloides/química , Produtos Biológicos/química , Modelos Moleculares , Doença de Alzheimer , Aminoácidos , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/antagonistas & inibidores , Proteínas Amiloidogênicas/química , Sítios de Ligação , Produtos Biológicos/farmacologia , Humanos , Ligações de Hidrogênio , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Estrutura-Atividade
12.
BMC Complement Altern Med ; 19(1): 210, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409400

RESUMO

BACKGROUND: Skin diseases are a major health concern especially in association with human immune deficiency syndrome and acquired an immune deficiency. The aim of this study was to document the ethnomedicinal information of plants used to treat skin diseases in Northern Pakistan. This is the first quantitative ethnobotanical study of therapeutic herbs utilized by the indigenous people of Northern Pakistan for skin diseases. METHODS: Interviews were taken to obtain information from 180 participants. Quantitative methods including fidelity level (FL), Frequency of citation (FC), Use-value (UV), Jaccard indices (JI), Family importance value (FIV), Relative frequency of citation (RFC) and Chi-square test were applied. Medicinal plants uses are also compared with 50 national and international publications. RESULTS: In this study, we recorded 106 plant species belonged to 56 floral families for treatment of skin ailments. The dominant life form reported was herb while the preferred method of utilization was powder, along with leaf as the most used plant part. RFC ranges from 0.07 to 0.25% whereas the highest FIV was recorded for family Pteridaceae. FL values range from 36.8 to 100%. The study reported 88% of new plant reports for the treatment of skin diseases. CONCLUSION: The present study revealed the importance of several plants used to treat skin diseases by the local communities of Northern Pakistan. The available literature supported the evidence of plant dermatological properties. Plants having high UV and RFC can be considered for further scientific analysis. There is dire need to create awareness among local, government and scientific communities for the preservation of medicinal species and ethnomedicinal knowledge in Northern Pakistan.


Assuntos
Extratos Vegetais/uso terapêutico , Plantas Medicinais/classificação , Dermatopatias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Etnobotânica/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão , Fitoterapia , Extratos Vegetais/química , Plantas Medicinais/química , Inquéritos e Questionários
13.
Biomed Res Int ; 2019: 2403718, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31317024

RESUMO

This study investigated the phytochemical characteristics and antioxidant activity in leaves, roots, stem, flower, and seed parts of Datura alba (D. alba). The study also assessed the heavy metal (Cr, Mn, Zn, and Cu) accumulation in each part of the plant. Among the phytochemicals, alkaloids were found only in leaves while tannins, flavonoids, and phenols were present in all parts of the plant. For antioxidant activity, free radical scavenging assay for 2,2-diphenyl-1-picrylhydrazyl (DPPH) was performed using ascorbic acid as the standard. Higher activity was shown by stem extract in methanol and leaf extract in n-hexane, ethyl acetate, and chloroform. Furthermore, all the target heavy metals were detected in all plant sections with the highest concentration of Zn in leaves and Cu in stem, root, flower, and seed. Due to stronger antioxidant potential and phytochemical composition, D. alba could prove as valuable prospect in pharmaceutical formulations by taking part in the antioxidant defense system against generation of free radicals.


Assuntos
Antioxidantes/química , Datura/química , Radicais Livres/antagonistas & inibidores , Metais Pesados/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Alcaloides/química , Alcaloides/isolamento & purificação , Antioxidantes/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Metais Pesados/química , Metais Pesados/classificação , Fenóis/química , Fenóis/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/classificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Sementes/química , Taninos/química , Taninos/classificação , Taninos/isolamento & purificação
14.
Artigo em Inglês | MEDLINE | ID: mdl-31354848

RESUMO

Ethnopharmacological Relevance: Aristolochia paucinervis (A. paucinervis) (Aristolochiaceae) is a plant frequently used in Moroccan alternative medicine. The aim of the current study is to investigate the phytochemical composition of rhizomes decoction of A. paucinervis (RDA) and to evaluate its acute and subacute toxicity following the OECD guidelines. Materials and Methods: The qualitative phytochemical analysis of A. paucinervis was performed using standard qualitative phytochemical procedures. The acute toxicity of rhizomes decoction of the studied plant was evaluated in mice at single doses of 1, 2, and 4 g/kg of body weight for 14 days. In subacute toxicity study, the decoction was orally administered to mice at three different doses (0.5, 1, and 1.5 g/kg/day) for 28 days. Histopathological and biochemical parameters were investigated. Results: The preliminary phytochemical screening showed the presence of flavonoids, saponins, alkaloids, and polyphenols and the absence of anthraquinones, sterols, and terpenes. There was no mortality and no significant changes occurred in animals treated with 1 and 2 g/kg in the acute toxicity model. The signs of toxicity and morbidity were remarkable with the highest tested dose (4g/kg). LD50 (dose required to kill 50% of the test population) was determined as 4 g/kg. Repeated oral administration of 1 and 1.5 g/kg/day of RDA for 28 days induced significant disturbance of serum parameters (AST, ALT, LDH, urea, creatinine). Kidney and liver extracted from mice fed with 1 and 1.5 g/kg/day showed significant histopathological injuries as tubular necrosis, inflammatory infiltrate, tubular degeneration, necrosis, and hepatic cholestasis. Meanwhile, neither histopathological nor biochemical alterations were observed in mice treated with 0.5 g/kg/day of body weight in comparison to the control group. Conclusion: RDA showed toxicity in mice at a dose of 1 g/kg/day under subacute toxicity conditions. RDA is safe at a single dose inferior to 4 g/kg of body weight. The plant extract prepared by decoction showed more poisonous effect than the extract prepared by maceration at room temperature.

15.
Sci Total Environ ; 677: 474-483, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31063890

RESUMO

Despite development of a record number of recreational sites and industrial zones on the Red Sea coast in the last decade, antibiotic-resistant bacteria in this environment remain largely unexplored. In this study, 16S rDNA sequencing was used to identify bacteria isolated from 12 sediment samples collected from the Red Sea coastal, offshore, and mangroves sites. Quantitative PCR was used to estimate the quantity of antimicrobial resistance genes (ARGs) in genomic DNA in the samples. A total of 470 bacteria were isolated and classified into 137 distinct species, including 10 candidate novel species. Site-specific bacterial communities inhabiting the Red Sea were apparent. Relatively, more resistant isolates were recovered from the coast, and samples from offshore locations contained the most multidrug-resistant bacteria. Eighteen ARGs were detected in this study encoding resistance to aminoglycoside, beta-lactam, sulfonamide, macrolide, quinolone, and tetracycline antibiotics. The qnrS, aacC2, ermC, and blaTEM-1 genes were commonly found in coastal and offshore sites. Relatively higher abundance of ARGs, including aacC2 and aacC3, were found in the apparently anthropogenically contaminated (beach) samples from coast compared to other collected samples. In conclusion, a relative increase in antimicrobial-resistant isolates was found in sediment samples from the Red Sea, compared to other studies. Anthropogenic activities likely contribute to this increase in bacterial diversity and ARGs.


Assuntos
Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Antibacterianos/farmacologia , Bactérias/classificação , Farmacorresistência Bacteriana Múltipla , Oceano Índico , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Arábia Saudita , Água do Mar/microbiologia
16.
Biomed Res Int ; 2019: 5276841, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080821

RESUMO

Magnetic carbon nanocomposite (MCN) was synthesized from waste biomass precursor, pineapple. The prepared adsorbent was characterized using different instrumental techniques and was used to remove levofloxacin (LEV) from effluents. The maximum sorption of LEV was observed at pH 7. Pseudo-2nd-order (PSO) kinetic was found to be the best model that fits well the adsorption kinetics data. For Langmuir adsorption isotherm, the R2 value was higher as compared with other isotherms. The Van't Hoff equation was used for thermodynamic parameters determinations. ΔS° (standard entropy) was positive and ΔG° (standard Gibb's free energy) was negative: -0.37, -1.81, and -3.73 kJmol-1 corresponding to 25, 40, and 60°C. The negative values of ΔG° at different temperatures stipulate that the adsorption of LEV was spontaneous in nature and adsorbent has a considerable affinity for LEV molecules. The MCN was then utilized in hybrid way by connecting with ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) membranes in series and as a result enhanced permeate fluxes were observed. The percent retention of LEV molecules was lower with UF membrane and with NF it was 96%, while it was 100% with RO. For MCN/UF and MCN/NF systems, improvement in % retention was recorded.


Assuntos
Filtração/métodos , Levofloxacino/isolamento & purificação , Magnetismo/métodos , Nanocompostos/química , Adsorção , Carbono/química , Filtração/instrumentação , Concentração de Íons de Hidrogênio , Resíduos Industriais , Cinética , Levofloxacino/química , Membranas Artificiais , Peso Molecular , Termodinâmica , Ultrafiltração/instrumentação , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química
17.
Microsc Res Tech ; 82(3): 304-316, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30614130

RESUMO

The pollen morphology of 11 salt tolerant plant species of family Amaranthaceae from the salt range of Northern Punjab, Pakistan has been studied. The palyno-morphological characters were examined using light and scanning electron microscope. The examined all salt tolerant species have a slight difference in size but have similarity in shape, pore ornamentation, and polarity. The observed morphological characters of pollen grains were pollen symmetry, size, shape, pore ornamentation, pore size, number of pores, exine thickness, polar and equatorial diameter and, P/E ratio. Apolar type of pollens has been observed in all species. Shape of pollens was spheroidal. Exine sculpturing of pollen grains was scabrate (six spp), microechinate (four spp), and microechinate-scabrate (one spp). Different pori numbers were observed in different species. The pantoporate aperturate and sunken pore ornamentation have been reported in all species. A pollen taxonomic key was developed using examined morphological characters for the accurate identification of halophytic taxa. The high fertility and low sterility of pollens confirmed that the selected halophytes are well-established in the salt region. The findings highlight the taxonomic significance of pollen morphology in correct identification and differentiation of salt tolerant plant species.


Assuntos
Amaranthaceae/anatomia & histologia , Amaranthaceae/classificação , Pólen/ultraestrutura , Plantas Tolerantes a Sal/anatomia & histologia , Microscopia Eletrônica de Varredura , Paquistão , Plantas Tolerantes a Sal/classificação
18.
Biomed Res Int ; 2019: 9873146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31950062

RESUMO

Background: Prickly pear (Opuntia spp.), called Barbary fig, is a cultivated species springing from family Cactaceae. It is native to Mexico and has been naturalized in other continents, especially the Mediterranean countries (North Africa). The aim of the study was to investigate the physical, physicochemical, and biochemical criteria of peels of three Moroccan prickly pear varieties (Aakria, Derbana, and Mles) growing in the Rhamna regions (dry area). Material and Methods: Both physicochemical characteristics (humidity, water activity, Brix, ash content, pH, and total titratable acidity) and biochemical characteristics (total carotenoid content, betalain content, total polyphenolic content, and ascorbic acid content) were were studied according to previously reported methods. Results: Regarding the physiochemical criteria, the moisture of the fresh peels of studied varieties ranged from 81.59 ± 0.02 to 83.47 ± 0.02%. The water activity (aw) ranged from 0.862 ± 0.001 to 0.872 ± 0.001. The values of Brix varied from 14.69 ± 0.05° Bx to 15.80 ± 0.03° Bx. pH values varied from 5.13 ± 0.01 to 5.32. The total titratable acidity values ranged from 0.130 ± 0.008 to 0.196 ± 0.014 g of citric acid/100 g of FM (fresh matter). The ash content values ranged from 8.92 ± 0.10 to 11.04 ± 0.06 g/100 g of FM. Regarding the biochemical criteria, the total carotenoid content ranged from 2.29 ± 0.01 to 2.87 ± 0.01 µg/g of FM. The total betalain content ranged from 6213.46 ± 58.86 to 8487.19 ± 51.71 µg/100 g of FM. The total polyphenolic content varied from 160 ± 3.55 to 243.79 ± 5.55 mg GA E/100 g of FM. The ascorbic content ranged from 58.21 ± 0.24 to 74.72 ± 0.17 mg/100 g of FM. Conclusion: The findings of physicochemical and biochemical criteria of the investigated varieties growing in Moroccan drylands showed promising results in terms of studied parameters.

19.
Drug Des Devel Ther ; 12: 3855-3866, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510401

RESUMO

Background: The obnoxious bitter taste of orally taken antibiotics is one of the biggest problems in the treatment of children. The pediatric population cannot tolerate the bitter taste of drugs and vomit out which ultimately leads to suboptimal therapeutic value, grimace and mental stress so it is the challenging task for the formulation scientists to formulate a palatable formulation particularly to overcome address the issue. Purpose of study: The study aimed to mask and evaluate the unpleasant bitter taste of azithro-mycin (AZ) in the dry suspension dosage form by physisorption technique. Materials and methods: AZ was selected as an adsorbent and titanium dioxide nanoparticles as adsorbate. The AZ nanohybrids (AZN) were prepared by treating fixed amount of adsorbent with a varied amount of adsorbate, prepared separately by dispersing it in an aqueous medium. The mixture was sonicated, stirred followed by filtration and drying. The AZN produced were characterized by various techniques including scanning electron microscopy (SEM), energy dispersive X-rays (EDX), powder X-ray diffraction (PXRD), HPLC and Fourier-transformed infrared (FTIR). The optimized nanohybrid was blended with other excipients to get stable and taste masked dry suspension dosage form. Results: The results confirmed the adsorption of titanium dioxide nanoparticles on the surface of AZ. The fabricated optimized formulation was subjected for taste masking by panel testing and accelerated stability studies. The results showed a remarkable improvement in bitter taste masking, inhibiting throat bite without affecting the dissolution rate. The product showed an excellent stability both in dry and reconstituted suspension. The optimized formulation of AZN and was found stable when subjected to physical and chemical stability studies, this is because of short and single step process which interns limits the exposure of the product to various environmental factors that could potentially affect the stability of the product. The dissolution rate of the optimized formulation of AZN was compared with its marketed counterpart, showing the same dissolution rate compared to its marketed formulation. Conclusion: The current study concludes that, by fabricating AZ-titanium nanohybrids using physisorption can effectively mask the bitter taste of the drug. The palatability and stability of azithromycin formulation was potentially enhanced without affecting its dissolution rate.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Nanopartículas/química , Paladar/efeitos dos fármacos , Titânio/farmacologia , Adsorção , Antibacterianos/química , Azitromicina/química , Voluntários Saudáveis , Humanos , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Titânio/química
20.
Biomed Res Int ; 2018: 5042430, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30276210

RESUMO

Cystic echinococcosis is a serious zoonotic disease caused by Echinococcus granulosus species complex. The current study is the first attempt to determine the level of infection in domestic livestock and to explore the CE-related knowledge and awareness among livestock farmers in different districts of Khyber Pakhtunkhwa, province of Pakistan. A total of 1297 animals were examined for hydatid cysts including 538 cows, 428 buffaloes, 208 sheep, and 123 goats, at different slaughter houses in different districts of Khyber Pakhtunkhwa in 2 years from September 2015 to September 2017. For epidemiological investigations, prevalence in association with various factors (climate, age, and gender), organ specificity, types of cysts (fertile, sterile, or calcified), and viability of cysts parameters was recorded. Basing on the results obtained, areas with high prevalence were selected for further follow-ups and administration of questionnaires to the farmers and dog owners, to provide baseline data about this parasitic disease and to identify potential areas of emergence with correspondence animal and of public health significance. The finding of this study revealed the presence of CE in livestock of KP, Pakistan. The prevalence of hydatid cysts was the highest in buffaloes (15.88%) followed by cows (15.79%), sheep (15.38%), and goats (3.25%). Our investigation revealed close relationship between prevalence and animal age and gender in different months of the year. These findings also showed the highest prevalence of hydatid cysts in liver (63.49%), followed by lungs (23.80%) and mesentery (2.64%). Fertile and viable cysts were observed in all animal species except goats. The highest percentage of fertile and viable cysts was reported from the liver and lungs of sheep. For evaluation of risk factors, a total of 384 respondents were investigated. The results of current study revealed that 97.9% of farmers are not familiar with CE and transmission of this infection from dogs to human and livestock. The present study shows that CE will continue to be of medical and veterinary importance in Pakistan.


Assuntos
Doenças dos Animais/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Equinococose/epidemiologia , Animais , Búfalos , Bovinos , Equinococose/veterinária , Echinococcus granulosus , Feminino , Doenças das Cabras , Cabras , Humanos , Incidência , Masculino , Paquistão/epidemiologia , Prevalência , Fatores de Risco , Ovinos , Doenças dos Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA