Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 31(23): 235801, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30844785

RESUMO

Neutron powder diffraction experiments were carried out on the magnetoelectric compound series (Co4-x Mn x )Nb2O9 (x = 0, 1, 2, 3, 3.5, 3.9, 3.95 and 4) from base temperature to above their Néel temperatures. Their magnetic structures were analysed by using the irreducible representation analysis and Rietveld refinement method. Similar to Co4Nb2O9, the compounds with x ⩽ 3.9 have noncollinear in-plane magnetic structures (Γ6) with magnetic moments lying purely in the ab plane with certain canting angles. Mn4Nb2O9 has a collinear antiferromagnetic structure (Γ2) with magnetic moments aligning along the c axis. The compound of x = 3.95 shows two magnetic phases in the magnetization, which was confirmed to have the Γ2 magnetic structure above 60 K and develop a second Γ6 local phase in addition to the main Γ2 phase due to doping. This study indicates 2.5 at% Co2+ doping is sufficient to alter the collinear easy-axis magnetic structure of Mn4Nb2O9 into the noncollinear easy-plane magnetic structure, which is attributed to the large easy-plane anisotropy of Co2+ and relative small Ising-like anisotropy of Mn2+. The doping effects on the Néel temperature and occupancy are also discussed.

2.
ACS Appl Mater Interfaces ; 10(26): 22348-22355, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29882406

RESUMO

Magnetic materials with large magnetic anisotropy are essential for workaday applications such as permanent magnets and magnetic data storage. There is widespread interest in finding efficient ways of controlling magnetic anisotropy, among which strain control has proven to be a very powerful technique. Here, we demonstrate the strain-mediated magnetic anisotropy in SrCoO3-δ thin film, a perovskite oxide that is metallic and adopts a cubic structure at δ ≤ 0.25. We find that the easy-magnetization axis in SrCoO3-δ can be rotated by 90° upon application of moderate epitaxial strains ranging from -1.2 to +1.8%. The magnetic anisotropy in compressive SrCoO3-δ thin films is huge, as shown by magnetic hysteresis loops rendering an anisotropy energy density of ∼106 erg/cm3. The local variance in magnetic force microscopy upon temperature and magnetic field reveals that the evolution of magnetic domains in the SCO thin film is strongly dependent on magnetic anisotropy.

3.
Nat Commun ; 7: 12664, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585637

RESUMO

Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA