Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30499656

RESUMO

Quasi-one-dimensional (quasi-1D) materials enjoy growing interest due to their unusual physical properties and promise for miniature electronic devices. However, the mechanical exfoliation of quasi-1D materials into thin flakes and nanoribbons received considerably less attention from researchers than the exfoliation of conventional layered crystals. In this study, we investigated the micromechanical exfoliation of representative quasi-1D crystals, TiS3 whiskers, and demonstrate that they typically split into narrow nanoribbons with very smooth, straight edges and clear signatures of 1D TiS3 chains. Theoretical calculations show that the energies required for breaking weak interactions between the two-dimensional (2D) layers and between 1D chains within the layers are comparable and, in turn, are considerably lower than those required for breaking the covalent bonds within the chains. We also emulated macroscopic exfoliation experiments on the nanoscale by applying a local shear force to TiS3 crystals in different crystallographic directions using a tip of an atomic force microscopy (AFM) probe. In the AFM experiments, it was possible to slide the 2D TiS3 layers relative to each other as well as to remove selected 1D chains from the layers. We systematically studied the exfoliated TiS3 crystals by Raman spectroscopy and identified the Raman peaks whose spectral positions were most dependent on the crystals' thickness. These results could be used to distinguish between TiS3 crystals with thickness ranging from one to about seven monolayers. The conclusions established in this study for the exfoliated TiS3 crystals can be extended to a variety of transition metal trichalcogenide materials as well as other quasi-1D crystals. The possibility of exfoliation of TiS3 into narrow (few-nm wide) crystals with smooth edges could be important for the future realization of miniature device channels with reduced edge scattering of charge carriers.

2.
Opt Express ; 26(14): 18115-18124, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114091

RESUMO

Infrared scattering scanning near-field optical microscopy (IR s-SNOM) provides for spectroscopic imaging with nanometer spatial resolution, yet full spatio-spectral imaging is constrained by long measurement times. Here, we demonstrate the application of compressed sensing algorithms to achieve hyperspectral FTIR-based nano-imaging at an order of magnitude faster imaging speed to achieve the same spectral content compared to conventional approaches. At the example of the spectroscopy of a single vibrational resonance, we discuss the relationship of prior knowledge of sparseness of the employed Fourier base functions and sub-sampling. Compressed sensing nano-FTIR spectroscopy promises both rapid and sensitive chemical nano-imaging which is highly relevant in academic and industrial settings for fundamental and applied nano- and bio-materials research.

3.
ACS Omega ; 3(4): 4141-4147, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023886

RESUMO

A main challenge in understanding the structure of a cell membrane and its interactions with drugs is the ability to chemically study the different molecular species on the nanoscale. We have achieved this for a model system consisting of mixed monolayers (MLs) of the biologically relevant phospholipid 1,2-distearoyl-sn-glycero-phosphatidylcholine and the antibiotic surfactin. By employing nano-infrared (IR) microscopy and spectroscopy in combination with atomic force microscopy imaging, it was possible to identify and chemically detect domain formation of the two constituents as well as to obtain IR spectra of these species with a spatial resolution on the nanoscale. A novel method to enhance the near-field imaging contrast of organic MLs by plasmon interferometry is proposed and demonstrated. In this technique, the organic layer is deposited on gold and ML graphene substrates, the latter of which supports propagating surface plasmons. Plasmon reflections arising from changes in the dielectric environment provided by the organic layer lead to an additional contrast mechanism. Using this approach, the interfacial region between surfactin and the phospholipid has been mapped and a transition region is identified.

4.
Opt Express ; 25(14): 16574-16588, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789160

RESUMO

Synchrotron radiation-based nano-FTIR spectroscopy utilizes the highly brilliant and ultra-broadband infrared (IR) radiation provided by electron storage rings for the infrared spectroscopic characterization of samples at the nanoscale. In order to exploit the full potential of this approach we investigated the influence of the properties of the radiation source, such as the electron bunch shape and spectral bandwidth of the emitted radiation, on near-field infrared spectra of silicon-carbide (SiC). The adapted configuration of the storage ring optics enables a modification of the transverse electron bunch profile allowing an increase of the measured near-field signal amplitude. Additionally, the decay of the signal amplitude due to the decreasing storage ring current is also eliminated. Further options for improving the sensitivity of nano-FTIR spectroscopy, which can also be applied to other broadband radiation sources, are the adaption of the spectral bandwidth to the wavelength range of interest or the use of polarization optics. The sensitivity enhancement emerging from these options is verified by comparing near-field spectra collected from crystalline SiC samples. The improvement in sensitivity by combining these approaches is demonstrated by acquiring nano-FTIR spectra from thin organic films, which show weak resonances in the IR-regime.

5.
Sci Rep ; 6: 27894, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282661

RESUMO

Two methods were investigated for non-invasive microbial growth-detection in intact glass vials as possible techniques for automated inspection of media-filled units. Tunable diode laser absorption spectroscopy (TDLAS) was used to determine microbially induced changes in O2 and CO2 concentrations within the vial headspaces. Isothermal microcalorimetry (IMC) allowed the detection of metabolic heat production. Bacillus subtilis and Streptococcus salivarius were chosen as test organisms. Parameters as robustness, sensitivity, comparability and time to detection (TtD) were evaluated to assess method adequacy. Both methods robustly detected growth of the tested microorganisms within less than 76 hours using an initial inoculum of <10CFU. TDLA turned out to be less sensitive than TDLA and IMC, as some false negative results were observed. Compared to the visual media-fill examination of spiked samples, the investigated techniques were slightly slower regarding TtD. Although IMC showed shorter TtD than TDLAS the latter is proposed for automating the media-fill inspection, as larger throughput can be achieved. For routine use either TDLA or a combination of TDLA and TDLA should be considered. IMC may be helpful for replacing the sterility assessment of commercial drug products before release.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Calorimetria/métodos , Dióxido de Carbono/análise , Oxigênio/análise , Espectrofotometria/métodos , Streptococcus salivarius/crescimento & desenvolvimento , Streptococcus salivarius/metabolismo , Bacillus subtilis/química , Lasers Semicondutores , Streptococcus salivarius/química , Temperatura Ambiente
6.
Opt Express ; 24(2): 1154-64, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832499

RESUMO

Nanoscale plasmonic phenomena observed in single and bi-layers of molybdenum disulfide (MoS(2)) on silicon dioxide (SiO(2)) are reported. A scattering type scanning near-field optical microscope (s-SNOM) with a broadband synchrotron radiation (SR) infrared source was used. We also present complementary optical mapping using tunable CO(2)-laser radiation. Specifically, there is a correlation of the topography of well-defined MoS(2) islands grown by chemical vapor deposition, as determined by atomic force microscopy, with the infrared (IR) signature of MoS(2). The influence of MoS(2) islands on the SiO(2) phonon resonance is discussed. The results reveal the plasmonic character of the MoS(2) structures and their interaction with the SiO(2) phonons leading to an enhancement of the hybridized surface plasmon-phonon mode. A theoretical analysis shows that, in the case of monolayer islands, the coupling of the MoS(2) optical plasmon mode to the SiO(2) surface phonons does not affect the infrared spectrum significantly. For two-layer MoS(2), the coupling of the extra inter-plane acoustic plasmon mode with the SiO(2) surface transverse phonon leads to a remarkable increase of the surface phonon peak at 794 cm(-1). This is in agreement with the experimental data. These results show the capability of the s-SNOM technique to study local multiple excitations in complex non-homogeneous structures.

8.
Opt Express ; 22(15): 17948-58, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089414

RESUMO

We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA