Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3283, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337765

RESUMO

Control of atomic-scale interfaces between materials with distinct electronic structures is crucial for the design and fabrication of most electronic devices. In the case of two-dimensional materials, disparate electronic structures can be realized even within a single uniform sheet, merely by locally applying different vertical gate voltages. Here, we utilize the inherently nano-structured single layer and bilayer graphene on silicon carbide to investigate lateral electronic structure variations in an adjacent single layer of tungsten disulfide (WS2). The electronic band alignments are mapped in energy and momentum space using angle-resolved photoemission with a spatial resolution on the order of 500 nm (nanoARPES). We find that the WS2 band offsets track the work function of the underlying single layer and bilayer graphene, and we relate such changes to observed lateral patterns of exciton and trion luminescence from WS2.

2.
ACS Nano ; 13(2): 1284-1291, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30645100

RESUMO

Two-dimensional materials with engineered composition and structure will provide designer materials beyond conventional semiconductors. However, the potentials of defect engineering remain largely untapped, because it hinges on a precise understanding of electronic structure and excitonic properties, which are not yet predictable by theory alone. Here, we utilize correlative, nanoscale photoemission spectroscopy to visualize how local introduction of defects modifies electronic and excitonic properties of two-dimensional materials at the nanoscale. As a model system, we study chemical vapor deposition grown monolayer WS2, a prototypical, direct gap, two-dimensional semiconductor. By cross-correlating nanoscale angle-resolved photoemission spectroscopy, core level spectroscopy, and photoluminescence, we unravel how local variations in defect density influence electronic structure, lateral band alignment, and excitonic phenomena in synthetic WS2 monolayers.

3.
Nano Lett ; 18(9): 5432-5438, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30063833

RESUMO

Emergent phenomena driven by electronic reconstructions in oxide heterostructures have been intensively discussed. However, the role of these phenomena in shaping the electronic properties in van der Waals heterointerfaces has hitherto not been established. By reducing the material thickness and forming a heterointerface, we find two types of charge-ordering transitions in monolayer VSe2 on graphene substrates. Angle-resolved photoemission spectroscopy (ARPES) uncovers that Fermi-surface nesting becomes perfect in ML VSe2. Renormalization-group analysis confirms that imperfect nesting in three dimensions universally flows into perfect nesting in two dimensions. As a result, the charge-density wave-transition temperature is dramatically enhanced to a value of 350 K compared to the 105 K in bulk VSe2. More interestingly, ARPES and scanning tunneling microscopy measurements confirm an unexpected metal-insulator transition at 135 K that is driven by lattice distortions. The heterointerface plays an important role in driving this novel metal-insulator transition in the family of monolayer transition-metal dichalcogenides.

4.
Nano Lett ; 17(12): 7339-7344, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29111764

RESUMO

The unique electronic band structure of indium nitride InN, part of the industrially significant III-N class of semiconductors, offers charge transport properties with great application potential due to its robust n-type conductivity. Here, we explore the water sensing mechanism of InN thin films. Using angle-resolved photoemission spectroscopy, core level spectroscopy, and theory, we derive the charge carrier density and electrical potential of a two-dimensional electron gas, 2DEG, at the InN surface and monitor its electronic properties upon in situ modulation of adsorbed water. An electric dipole layer formed by water molecules raises the surface potential and accumulates charge in the 2DEG, enhancing surface conductivity. Our intuitive model provides a novel route toward understanding the water sensing mechanism in InN and, more generally, for understanding sensing material systems beyond InN.

5.
ACS Nano ; 10(10): 9500-9508, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27700035

RESUMO

The discovery of new families of exfoliatable 2D crystals that have diverse sets of electronic, optical, and spin-orbit coupling properties enables the realization of unique physical phenomena in these few-atom-thick building blocks and in proximity to other materials. Herein, using NaSn2As2 as a model system, we demonstrate that layered Zintl phases having the stoichiometry ATt2Pn2 (A = group 1 or 2 element, Tt = group 14 tetrel element, and Pn = group 15 pnictogen element) and feature networks separated by van der Waals gaps can be readily exfoliated with both mechanical and liquid-phase methods. We identified the symmetries of the Raman-active modes of the bulk crystals via polarized Raman spectroscopy. The bulk and mechanically exfoliated NaSn2As2 samples are resistant toward oxidation, with only the top surface oxidizing in ambient conditions over a couple of days, while the liquid-exfoliated samples oxidize much more quickly in ambient conditions. Employing angle-resolved photoemission spectroscopy, density functional theory, and transport on bulk and exfoliated samples, we show that NaSn2As2 is a highly conducting 2D semimetal, with resistivities on the order of 10-6 Ω·m. Due to peculiarities in the band structure, the dominating p-type carriers at low temperature are nearly compensated by the opening of n-type conduction channels as temperature increases. This work further expands the family of exfoliatable 2D materials to layered van der Waals Zintl phases, opening up opportunities in electronics and spintronics.

6.
ACS Nano ; 10(11): 10058-10067, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27768848

RESUMO

There is a substantial interest in the heterostructures of semiconducting transition metal dichalcogenides (TMDCs) among each other or with arbitrary materials, through which the control of the chemical, structural, electronic, spintronic, and optical properties can lead to a change in device paradigms. A critical need is to understand the interface between TMDCs and insulating substrates, for example, high-κ dielectrics, which can strongly impact the electronic properties such as the optical gap. Here, we show that the chemical and electronic properties of the single-layer (SL) TMDC, WS2, can be transferred onto high-κ transition metal oxide substrates TiO2 and SrTiO3. The resulting samples are much more suitable for measuring their electronic and chemical structures with angle-resolved photoemission than their native-grown SiO2 substrates. We probe the WS2 on the micron scale across 100 µm flakes and find that the occupied electronic structure is exactly as predicted for free-standing SL WS2 with a strong spin-orbit splitting of 420 meV and a direct band gap at the valence band maximum. Our results suggest that TMDCs can be combined with arbitrary multifunctional oxides, which may introduce alternative means of controlling the optoelectronic properties of such materials.

7.
ACS Nano ; 10(6): 6315-22, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27267820

RESUMO

The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure.

8.
Langmuir ; 31(35): 9700-6, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26308879

RESUMO

We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.

9.
Nano Lett ; 15(9): 5883-7, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26315566

RESUMO

The dynamics of excited electrons and holes in single layer (SL) MoS2 have so far been difficult to disentangle from the excitons that dominate the optical response of this material. Here, we use time- and angle-resolved photoemission spectroscopy for a SL of MoS2 on a metallic substrate to directly measure the excited free carriers. This allows us to ascertain a direct quasiparticle band gap of 1.95 eV and determine an ultrafast (50 fs) extraction of excited free carriers via the metal in contact with the SL MoS2. This process is of key importance for optoelectronic applications that rely on separated free carriers rather than excitons.

10.
ACS Nano ; 9(6): 6502-10, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26039108

RESUMO

In this work, we demonstrate direct van der Waals epitaxy of MoS2-graphene heterostructures on a semiconducting silicon carbide (SiC) substrate under ultrahigh vacuum conditions. Angle-resolved photoemission spectroscopy (ARPES) measurements show that the electronic structure of free-standing single-layer (SL) MoS2 is retained in these heterostructures due to the weak van der Waals interaction between adjacent materials. The MoS2 synthesis is based on a reactive physical vapor deposition technique involving Mo evaporation and sulfurization in a H2S atmosphere on a template consisting of epitaxially grown graphene on SiC. Using scanning tunneling microscopy, we study the seeding of Mo on this substrate and the evolution from nanoscale MoS2 islands to SL and bilayer (BL) MoS2 sheets during H2S exposure. Our ARPES measurements of SL and BL MoS2 on graphene reveal the coexistence of the Dirac states of graphene and the expected valence band of MoS2 with the band maximum shifted to the corner of the Brillouin zone at K̅ in the SL limit. We confirm the 2D character of these electronic states via a lack of dispersion with photon energy. The growth of epitaxial MoS2-graphene heterostructures on SiC opens new opportunities for further in situ studies of the fundamental properties of these complex materials, as well as perspectives for implementing them in various device schemes to exploit their many promising electronic and optical properties.

11.
J Phys Condens Matter ; 27(16): 164206, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25835249

RESUMO

In order to exploit the intriguing optical properties of graphene it is essential to gain a better understanding of the light-matter interaction in the material on ultrashort timescales. Exciting the Dirac fermions with intense ultrafast laser pulses triggers a series of processes involving interactions between electrons, phonons and impurities. Here we study these interactions in epitaxial graphene supported on silicon carbide (semiconducting) and iridium (metallic) substrates using ultrafast time- and angle-resolved photoemission spectroscopy (TR-ARPES) based on high harmonic generation. For the semiconducting substrate we reveal a complex hot carrier dynamics that manifests itself in an elevated electronic temperature and an increase in linewidth of the π band. By analyzing these effects we are able to disentangle electron relaxation channels in graphene. On the metal substrate this hot carrier dynamics is found to be severely perturbed by the presence of the metal, and we find that the electronic system is much harder to heat up than on the semiconductor due to screening of the laser field by the metal.

12.
Phys Rev Lett ; 114(4): 046802, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25679902

RESUMO

The electronic structure of epitaxial single-layer MoS2 on Au(111) is investigated by angle-resolved photoemission spectroscopy. Pristine and potassium-doped layers are studied in order to gain access to the conduction band. The potassium-doped layer is found to have a (1.39±0.05) eV direct band gap at K[over ¯] with the valence band top at Γ[over ¯] having a significantly higher binding energy than at K[over ¯]. The moiré superstructure of the epitaxial system does not lead to the presence of observable replica bands or minigaps. The degeneracy of the upper valence band at K[over ¯] is found to be lifted by the spin-orbit interaction, leading to a splitting of (145±4) meV. This splitting is anisotropic and in excellent agreement with recent calculations. Finally, it is shown that the potassium doping does not only give rise to a rigid shift of the band structure but also to a distortion, leading to the possibility of band structure engineering in single-layers of transition metal dichalcogenides.

13.
Nano Lett ; 15(1): 326-31, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25458168

RESUMO

Time- and angle-resolved photoemission measurements on two doped graphene samples displaying different doping levels reveal remarkable differences in the ultrafast dynamics of the hot carriers in the Dirac cone. In the more strongly (n-)doped graphene, we observe larger carrier multiplication factors (>3) and a significantly faster phonon-mediated cooling of the carriers back to equilibrium compared to in the less (p-)doped graphene. These results suggest that a careful tuning of the doping level allows for an effective manipulation of graphene's dynamical response to a photoexcitation.

14.
Nat Commun ; 5: 5062, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25262792

RESUMO

The production of high-quality graphene-oxide interfaces is normally achieved by graphene growth via chemical vapour deposition on a metallic surface, followed by transfer of the C layer onto the oxide, by atomic layer and physical vapour deposition of the oxide on graphene or by carbon deposition on top of oxide surfaces. These methods, however, come with a series of issues: they are complex, costly and can easily result in damage to the carbon network, with detrimental effects on the carrier mobility. Here we show that the growth of a graphene layer on a bimetallic Ni3Al alloy and its subsequent exposure to oxygen at 520 K result in the formation of a 1.5 nm thick alumina nanosheet underneath graphene. This new, simple and low-cost strategy based on the use of alloys opens a promising route to the direct synthesis of a wide range of interfaces formed by graphene and high-κ dielectrics.

15.
Phys Rev Lett ; 112(25): 257401, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-25014829

RESUMO

Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tunable band gap. However, no consistent picture of the gap's effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here, we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second substate of the conduction band, in which the excited electrons decay through fast, phonon-assisted interband transitions.

16.
Rev Sci Instrum ; 85(1): 013907, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517782

RESUMO

The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.

17.
Phys Rev Lett ; 111(21): 216806, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313515

RESUMO

Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the σ band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cutoff in the Fermi-Dirac distribution. They are therefore not expected for the σ band of graphene that has a binding energy of more than ≈3.5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cutoff in the density of σ states. The existence of the effect suggests a very weak coupling of holes in the σ band not only to the π electrons of graphene but also to the substrate electronic states. This is confirmed by the presence of such kinks for graphene on several different substrates that all show a strong coupling constant of λ≈1.

18.
Phys Rev Lett ; 111(2): 027403, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23889442

RESUMO

The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. Until now, the hot carrier dynamics in graphene could only be accessed indirectly. Here, we present a dynamical view on the Dirac cone by time- and angle-resolved photoemission spectroscopy. This allows us to show the quasi-instant thermalization of the electron gas to a temperature of ≈2000 K, to determine the time-resolved carrier density, and to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions).

19.
J Phys Condens Matter ; 25(9): 094001, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23399941

RESUMO

Quasi-free-standing monolayer graphene can be produced by intercalating species like oxygen or hydrogen between epitaxial graphene and the substrate crystal. If the graphene was indeed decoupled from the substrate, one would expect the observation of a similar electronic dispersion and many-body effects, irrespective of the substrate and the material used to achieve the decoupling. Here we investigate the electron-phonon coupling in two different types of quasi-free-standing monolayer graphene: decoupled from SiC via hydrogen intercalation and decoupled from Ir via oxygen intercalation. The two systems show similar overall behaviours of the self-energy and a weak renormalization of the bands near the Fermi energy. The electron-phonon coupling is found to be so weak that it renders the precise determination of the coupling constant λ through renormalization difficult. The estimated value of λ is 0.05(3) for both systems.

20.
ACS Nano ; 6(11): 9551-8, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23051045

RESUMO

Using photoemission spectroscopy techniques, we show that oxygen intercalation is achieved on an extended layer of epitaxial graphene on Ir(111), which results in the "lifting" of the graphene layer and in its decoupling from the metal substrate. The oxygen adsorption below graphene proceeds as on clean Ir(111), giving only a slightly higher oxygen coverage. Upon lifting, the C 1s signal shows a downshift in binding energy, due to the charge transfer to graphene from the oxygen-covered metal surface. Moreover, the characteristic spectral signatures of the graphene-substrate interaction in the valence band are removed, and the spectrum of strongly hole-doped, quasi free-standing graphene with a single Dirac cone around the K point is observed. The oxygen can be deintercalated by annealing, and this process takes place at around T = 600 K, in a rather abrupt way. A small amount of carbon atoms is lost, implying that graphene has been etched. After deintercalation graphene restores its interaction with the Ir(111) substrate. Additional intercalation/deintercalation cycles readily occur at lower oxygen doses and temperatures, consistently with an increasingly defective lattice. Our findings demonstrate that oxygen intercalation is an efficient method for fully decoupling an extended layer of graphene from a metal substrate, such as Ir(111). They pave the way for the fundamental research on graphene, where extended, ordered layers of free-standing graphene are important and, due to the stability of the intercalated system in a wide temperature range, also for the advancement of next-generation graphene-based electronics.


Assuntos
Cristalização/métodos , Grafite/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oxigênio/química , Teste de Materiais , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA