Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Invest ; : 1-17, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34486463

RESUMO

Although immune checkpoint inhibitors (ICIs) have emerged as new therapeutic options for refractory cancer, they are only effective in select patients. Tumor antigen-pulsed dendritic cell (DC) vaccine therapy activates tumor-specific cytotoxic T lymphocytes, making it an important immunotherapeutic strategy. Salivary ductal carcinoma (SDC) carries a poor prognosis, including poor long-term survival after metastasis or recurrence. In this study, we reported a case of refractory metastatic SDC that was treated with a tumor lysate-pulsed DC vaccine followed by a single injection of low-dose nivolumab, and a durable complete response was achieved. We retrospectively analyzed the immunological factors that contributed to these long-lasting clinical effects. First, we performed neoantigen analysis using resected metastatic tumor specimens obtained before treatment. We found that the tumor had 256 non-synonymous mutations and 669 class I high-affinity binding neoantigen peptides. Using synthetic neoantigen peptides and ELISpot analysis, we found that peripheral blood mononuclear leukocytes cryopreserved before treatment contained pre-existing neoantigen-specific T cells, and the cells obtained after treatment exhibited greater reactivity to neoantigens than those obtained before treatment. Our results collectively suggest that the rapid and long-lasting effect of this combination therapy in our patient may have resulted from the presence of pre-existing neoantigen-specific T cells and stimulation and expansion of those cells following tumor lysate-pulsed DC vaccine and ICI therapy.

2.
Anticancer Res ; 41(8): 4047-4052, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281873

RESUMO

BACKGROUND/AIM: Tropomyosin-related kinase B (TrkB)/brain-derived neurotrophic factor (BDNF) signaling plays a role in inducing malignant phenotypes in several aggressive types of cancers. To create a conclusive therapy targeting TrkB/BDNF signaling in solid refractory cancers, the biological significance of TrkB/BDNF signaling was analyzed in pancreatic ductal adenocarcinoma (PDAC) cells. MATERIALS AND METHODS: Three PDAC cell lines were used as target cells to investigate proliferation and invasiveness. Small interfering RNA (siRNA) and the TrkB tyrosine kinase inhibitor k252a were used as TrkB/BDNF signaling inhibitors. RESULTS: All PDAC cell lines expressed TrkB and BDNF. When TrkB and BDNF were inhibited by siRNA or k252a, the invasiveness of PANC-1 and SUIT-2 cells significantly decreased. When TrkB was inhibited by siRNA or k252a, proliferation was significantly inhibited in PDAC cells. CONCLUSION: TrkB/BDNF signaling may be a new therapeutic target for PDAC. Therapies targeting TrkB/BDNF signaling may be a conclusive cancer therapy for refractory solid cancer.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Carbazóis/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Alcaloides Indólicos/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor trkB/antagonistas & inibidores , Receptor trkB/genética , Transdução de Sinais/efeitos dos fármacos
3.
Anticancer Res ; 41(8): 4101-4115, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281881

RESUMO

BACKGROUND/AIM: Neoantigens are tumor-specific antigens that emerge due to gene mutations in tumor cells, and are highly antigenic epitopes that escape central immune tolerance in the thymus, making cancer vaccine therapy a desirable option. PATIENTS AND METHODS: Tumor neoantigens were predicted in 17 patients with advanced cancer. They were resistant to the standard treatment regime, and their synthetic peptides were pulsed to the patient's monocyte-derived dendritic cells (DCs), and administered to the patient's lymph nodes via ultrasound. RESULTS: Some patients showed sustained tumor shrinkage after this treatment, while some did not respond, showing no ELISpot reaction. Although the number of mutations and the predicted neoantigen epitopes differed between patients, the clinical effect depended more on the presence or absence of an immune response after vaccination rather than the number of neoantigens. CONCLUSION: Intranodal neoantigen peptide-pulsed DC vaccine administration therapy has clinical and immunological efficacy and safety.


Assuntos
Antígenos de Neoplasias/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Neoplasias/terapia , Peptídeos/administração & dosagem , Adulto , Idoso , Feminino , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
4.
Sci Rep ; 11(1): 13590, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193879

RESUMO

Neoantigens are tumour-specific antigens that arise from non-synonymous mutations in tumour cells. However, their effect on immune responses in the tumour microenvironment remains unclear in breast cancer. We performed whole exome and RNA sequencing of 31 fresh breast cancer tissues and neoantigen prediction from non-synonymous single nucleotide variants (nsSNVs) among exonic mutations. Neoantigen profiles were determined by predictive HLA binding affinity (IC50 < 500 nM) and mRNA expression with a read count of ≥ 1. We evaluated the association between neoantigen load and expression levels of immune-related genes. Moreover, using primary tumour cells established from pleural fluid of a breast cancer patient with carcinomatous pleurisy, we induced cytotoxic T lymphocytes (CTLs) by coculturing neoantigen peptide-pulsed dendritic cells (DCs) with autologous peripheral lymphocytes. The functions of CTLs were examined by cytotoxicity and IFN-γ ELISpot assays. Neoantigen load ranged from 6 to 440 (mean, 95) and was positively correlated to the total number of nsSNVs. Although no associations between neoantigen load and mRNA expression of T cell markers were observed, the coculture of neoantigen-pulsed DCs and lymphocytes successfully induced CTLs ex vivo. These results suggest that neoantigen analysis may have utility in developing strategies to elicit T cell responses.

5.
Transl Oncol ; 14(9): 101152, 2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34134073

RESUMO

In our previous study, we found that inhibition of protein tyrosine phosphatase non-receptor type 3 (PTPN3), which is expressed in lymphocytes, enhances lymphocyte activation, suggesting PTPN3 may act as an immune checkpoint molecule. However, PTPN3 is also expressed in various cancers, and the biological significance of PTPN3 in cancer cells is still not well understood, especially for lung neuroendocrine tumor (NET).Therefore, we analyzed the biological significance of PTPN3 in small cell lung cancer and examined the potential for PTPN3 inhibitory treatment as a cancer treatment approach in lung NET including small cell lung cancer (SCLC) and large cell neuroendocrine cancer (LCNEC). Experiments in a mouse xenograft model using allo lymphocytes showed that PTPN3 inhibition in SCLC cells enhanced the anti-tumor effect of PTPN3-suppressed activated lymphocytes. In addition, PTPN3 was associated with increased vascularization, decreased CD8/FOXP3 ratio and cellular immunosuppression in SCLC clinical specimens. Experiments in a mouse xenograft model using autocrine lymphocytes also showed that PTPN3 inhibition in LCNEC cells augmented the anti-tumor effect of PTPN3-suppressed activated lymphocytes. In vitro experiments showed that PTPN3 is involved in the induction of malignant traits such as proliferation, invasion and migration. Signaling from PTPN3 is mediated by MAPK and PI3K signals via tyrosine kinase phosphorylation through CACNA1G calcium channel. Our results show that PTPN3 suppression is associated with lymphocyte activation and cancer suppression in lung NET. These results suggest that PTPN3 suppression could be a new method of cancer treatment and a major step in the development of new cancer immunotherapies.

6.
Anticancer Res ; 40(8): 4663-4674, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32727790

RESUMO

BACKGROUND/AIM: Roles for mutant (mt) KRAS in the innate immune microenvironment in colorectal cancer (CRC) were explored. MATERIALS AND METHODS: Human CRC HCT116-derived, mtKRAS-disrupted (HKe3) cells that express exogenous mtKRAS and allogenic cytokine-activated killer (CAK) cells were co-cultured in 3D floating (3DF) culture. The anti-CD155 antibody was used for function blocking and immuno histochemistry. RESULTS: Infiltration of CAK cells, including NKG2D+ T cells, into the deep layer of HKe3-mtKRAS spheroids, was observed. Surface expression of CD155 was found to be up-regulated by mtKRAS in 3DF culture and CRC tissues. Further, the number of CD3+ tumor-infiltrating cells in the invasion front that show substantial CD155 expression was significantly larger than the number showing weak expression in CRC tissues with mtKRAS. CD155 blockade decreased the growth of spheroids directly and indirectly through the release of CAK cells. CONCLUSION: CD155 blockade may be useful for therapies targeting tumors containing mtKRAS.


Assuntos
Evasão da Resposta Imune/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Receptores Virais/imunologia , Linfócitos T/imunologia , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Neoplasias Colorretais/imunologia , Feminino , Humanos , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral/imunologia
7.
J Immunother ; 43(4): 121-133, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31834207

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is resistant to immunotherapy. As a factor of resistance, the dense fibrosis of this cancer acts as a barrier to inhibit immune cell infiltration into a tumor. We examined the influence of a Hedgehog signal inhibitor, Patched 1-interacting peptide, on fibrosis, infiltration of immune cells, and immunotherapeutic effects on PDAC. We found that this peptide inhibited proliferation and migration of cancer-associated fibroblasts and cancer cells. Furthermore, this peptide reduced the production of extracellular matrix and transforming growth factor ß1 in cancer-associated fibroblasts and induced expression of HLA-ABC in PDAC cells and interferon-γ in lymphocytes. In vivo, the peptide suppressed fibrosis of PDAC and increased immune cell infiltration into tumors. The combination of this peptide and an anti-programmed death-1 antibody augmented the antitumor effect, and this combination showed the same effect in experiments using cancer cells and autologous lymphocytes. These results indicate that, in addition to the direct effect of tumor suppression, the Patched 1-interacting peptide increases the infiltration of immune cells by reducing fibrosis of PDAC and consequently enhances the effect of immunotherapy. Therefore, treatment with this peptide may be a novel therapy with 2 different mechanisms: direct tumor suppression and enhancing the immune response against PDAC.

8.
Cancer Immunol Immunother ; 68(10): 1649-1660, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31562536

RESUMO

It has been shown that protein tyrosine phosphatase non-receptor type (PTPN) 3 inhibits T-cell activation. However, there is no definitive conclusion about how the inhibition of PTPN3 in lymphocytes affects immune functions in human lymphocytes. In the present study, we showed that PTPN3 inhibition significantly contributes to the enhanced activation of activated human lymphocytes. The PTPN3 expression of lymphocytes was significantly increased through the activation process using IL-2 and anti-CD3 mAb. Interestingly, inhibiting the PTPN3 expression in activated lymphocytes significantly augmented the proliferation, migration, and cytotoxicity through the phosphorylation of zeta-chain-associated protein kinase 70 (ZAP-70), lymphocyte-specific protein tyrosine kinase (LCK), and extracellular signal-regulated kinases (ERK). Lymphocyte activation by PTPN3 inhibition was observed only in activated CD3+ T cells and not in NK cells or resting T cells. In therapy experiments using autologous tumors and lymphocytes, PTPN3 inhibition significantly augmented the number of tumor-infiltrated lymphocytes and the cytotoxicity of activated lymphocytes. Our results strongly imply that PTPN3 acts as an immune checkpoint in activated lymphocytes and that PTPN3 inhibitor may be a new non-antibody-type immune checkpoint inhibitor for cancer therapy.


Assuntos
Pontos de Checagem do Ciclo Celular , Ativação Linfocitária , Neoplasias Ovarianas/prevenção & controle , Proteína Tirosina Fosfatase não Receptora Tipo 3/antagonistas & inibidores , Linfócitos T/imunologia , Animais , Apoptose , Movimento Celular , Proliferação de Células , Feminino , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína-Tirosina Quinase ZAP-70/metabolismo
9.
Anticancer Res ; 39(8): 4517-4523, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31366554

RESUMO

BACKGROUND/AIM: Immune checkpoint inhibitors (ICIs) have dramatically changed the clinical outcomes of advanced tumours. However, biomarkers for monitoring immunological features during immunotherapy remain unclear, especially those in the peripheral blood, which are easily available. This study evaluated the usefulness of nCounter Analysis System in identifying immunological biomarkers in peripheral blood mononuclear cells (PBMCs) during ICI therapy. PATIENTS AND METHODS: PBMCs from two patients who responded well to ICI therapy were used, and the expression levels of immune-related mRNA and extracellular proteins were analyzed. RESULTS: Changes in the expression levels of 55 genes from pre-treatment to on-treatment were bioinformatically similar between the two cases. The expression levels of PD-1 were consistent with those by flow cytometry analysis, a reliable tool for monitoring various markers. CONCLUSION: The nCounter Analysis System may be a potent tool to simultaneously investigate genes and proteins on PBMCs as biomarkers during immunotherapy using a small amount of sample.


Assuntos
Biomarcadores Tumorais/sangue , Imunoterapia , Neoplasias Pulmonares/sangue , Proteínas de Neoplasias/genética , Idoso , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/sangue
10.
Anticancer Res ; 39(3): 1179-1184, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30842147

RESUMO

BACKGROUND/AIM: Small-cell lung cancer (SCLC) remains one of deadliest types of cancers. Cis-diamminedichloroplatinum (CDDP) is a key chemotherapeutic agent for SCLC, however, its therapeutic effect is limited. Recently, hypoxia in the cancer microenvironment has been suggested to influence the effect of cancer therapy. MATERIALS AND METHODS: Using small interfering RNA inhibition of leukocyte common antigen-related interacting protein alpha 4 (liprin-α4), and of hypoxia-inducible factor (HIF)-1α, proliferation, invasion, migration and chemosensitivity were investigated in SBC-5 SCLC cells, under normoxia and hypoxia. RESULTS: Liprin-α4 was found to contribute to proliferation, but not migration and invasion of SBC-5 cells both under normoxia and hypoxia. Inhibition of liprin-α4 increased chemosensitivity of SBC-5 cells under hypoxia. Liprin-α4 signaling occurs through mitogen-activated protein kinase pathways via activation of HIF1α expression. Inhibition of HIF1α reduced proliferation and increased chemosensitivity of SBC-5 cells under hypoxia. CONCLUSION: Liprin-α4 inhibition may enhance the effect of CDDP and liprin-α4 might be a novel therapeutic target in SCLC.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/terapia , RNA Interferente Pequeno/administração & dosagem , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Carcinoma de Pequenas Células do Pulmão/terapia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo
11.
Anticancer Res ; 38(8): 4543-4547, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30061220

RESUMO

BACKGROUND/AIM: Small cell lung cancer (SCLC) is still a deadly type of cancer for which there are few effective therapeutic strategies. Development of a new molecule targeting agent is urgently desired. Previously we showed that recombination signal binding protein for immunoglobulin-kappa-J region (RBPJ) and mastermind-like 3 (MAML3) are new therapeutic targets for pancreatic cancer. In the present study, we analyzed whether RBPJ/MAML3 inhibition could also be a new therapeutic strategy for SCLC. MATERIALS AND METHODS: Using silencing of RBPJ/MAML3, proliferation, invasion, migration and chemosensitivity of SBC-5 cells were investigated. RESULTS: RBPJ/MAML3 inhibition reduced Smoothened and HES1 expression, suggesting that RBPJ/MAML3 signaling was through Hedgehog and NOTCH pathways. In the analysis of cell functions, RBPJ/MAML3 inhibition significantly reduced proliferation and invasiveness via reduction of expression of matrix metalloproteinases. On the other hand, RBPJ/MAML3 inhibition also reduced chemosensitivity to cis-diamminedichlo-roplatinum and gemcitabine. CONCLUSION: These results suggest that RBPJ and MAML3 could be new therapeutic targets for SCLC, however, chemosensitivity may be reduced in combinational use with other chemo-therapeutic agents.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Fatores de Transcrição/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Metaloproteinases da Matriz/metabolismo , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Transativadores
12.
Anticancer Res ; 38(7): 4273-4279, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29970561

RESUMO

BACKGROUND/AIM: Epithelial cell adhesion molecule (EpCAM) is expressed in various types of cancer, including breast cancer, and is correlated with metastasis, invasion, therapeutic resistance and prognosis. Moreover, several cell surface markers, such as CD44 and EpCAM, are molecular targets on cancer stem-like cells of breast cancer. The aim of this study was to investigate whether catumaxomab, a clinical-grade bispecific antibody that binds to both EpCAM on tumor cells and CD3 on T-cells, combined with activated T-cells can eliminate chemoresistant triple-negative breast cancer (TNBC) cells in vitro. MATERIALS AND METHODS: First, a cell line (MUK-BC1) was established from human breast carcinoma cells derived from a patient with chemoresistant and disseminated breast cancer. These EpCAM-positive TNBC cells were almost completely resistant to various drug-mediated cytotoxicities up to a concentration of 10 µg/ml. RESULTS: Pre-treatment with catumaxomab and subsequent addition of interleukin-2/OKT3-activated autologous T-cells eliminated EpCAM-positive TNBC cells. CONCLUSION: Catumaxomab combined with activated T-cells may be a potent therapeutic modality to overcome chemoresistant EpCAM-positive TNBC cells.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Imunoterapia/métodos , Linfócitos T/imunologia , Neoplasias de Mama Triplo Negativas , Adulto , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/antagonistas & inibidores , Feminino , Humanos , Ativação Linfocitária
13.
Anticancer Res ; 38(5): 2739-2748, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29715094

RESUMO

BACKGROUND/AIM: Metronidazole (MNZ) is a common antibiotic that exerts disulfiram-like effects when taken together with alcohol. However, the relationship between MNZ and aldehyde dehydrogenase (ALDH) activity remains unclear. This study investigated whether MNZ reduces cancer stemness by suppressing ALDH activity and accordingly reducing the malignancy of cholangiocarcinoma (CCA). MATERIALS AND METHODS: We developed gemcitabine (GEM)-resistant TFK-1 cells and originally established CCA cell line from a patient with GEM-resistant CCA. Using these cell lines, we analyzed the impacts of MNZ for cancer stem cell markers, invasiveness, and chemosensitivity. RESULTS: MNZ reduced ALDH activity in GEM-resistant CCA cells, leading to decreased invasiveness and enhanced chemosensitivity. MNZ diminished the invasiveness by inducing mesenchymal-epithelial transition and enhancing chemosensitivity by increasing ENT1 (equilibrative nucleoside transporter 1) and reducing RRM1 (ribonucleotide reductase M1). CONCLUSION: MNZ reduced cancer stemness in GEM-resistant CCA cells. Combined GEM and MNZ would be a promising therapeutic strategy for cancer stem-like CAA.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Aldeído Desidrogenase/biossíntese , Aldeído Desidrogenase/genética , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Transdiferenciação Celular/efeitos dos fármacos , Colangiocarcinoma/metabolismo , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Metronidazol/administração & dosagem , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/enzimologia , Esferoides Celulares/efeitos dos fármacos
14.
Cell Immunol ; 310: 199-204, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27522179

RESUMO

We investigated whether hypoxia-induced activation of Hh signaling contributes to PDL-1 expression in cancer and whether it affects the anti-tumor function of activated lymphocytes. Hypoxia augmented PDL-1 expression and inhibition of Hh signaling reduced PDL-1 expression under hypoxia. When activated lymphocytes were cocultured with cancers treated with a Hh inhibitor, activated lymphocyte cell numbers increased under hypoxia. In contrast, this increase was abrogated when cancer cells were treated with a PDL-1 neutralizing antibody. These results suggest that Hh signaling is one of regulatory pathways of PDL-1 expression under hypoxia and that inhibiting Hh signaling may induce lymphocyte anti-tumor activity.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Hipóxia/imunologia , Linfócitos/imunologia , Neoplasias/imunologia , Antígenos de Neoplasias/imunologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia/terapia , Ativação Linfocitária , Terapia de Alvo Molecular , Neoplasias/terapia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Transativadores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alcaloides de Veratrum/farmacologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
15.
Anticancer Res ; 36(7): 3585-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27354627

RESUMO

BACKGROUND/AIM: The serine/threonine-protein kinase B-Raf (BRAF) V600E mutant (BRAF(V600E)) inhibitor vemurafenib, has improved clinical outcomes for patients with BRAF(V600E) melanoma, but acquired cellular resistance mediated by AKT serine/threonine kinase 1 (AKT) phosphorylation limits its efficacy. We examined the effect of resveratrol on vemurafenib-resistant melanoma cells. MATERIALS AND METHODS: A vemurafenib-resistant human metastatic melanoma cell line positive for the BRAF V600E mutation was established. The anti-tumorigenic effects of vemurafenib and resveratrol, both alone and in combination, were examined through analysis of cell proliferation and protein expression. RESULTS: The level of phosphorylated AKT (p-AKT) was increased in the primary melanoma cells after treatment with vemurafenib, and the basal level of p-AKT was increased in vemurafenib-resistant melanoma cells. Notably, resveratrol both alone and in combination with vemurafenib effectively suppressed cell proliferation and AKT phosphorylation in both parental and vemurafenib-resistant melanoma cells. CONCLUSION: Vemurafenib resistance can be reversed by addition of resveratrol in patients undergoing treatment with BRAF inhibitors.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estilbenos/farmacologia , Sulfonamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Melanoma/tratamento farmacológico , Melanoma/patologia , Mutação de Sentido Incorreto , Fosforilação , Resveratrol , Células Tumorais Cultivadas , Vemurafenib
16.
Anticancer Res ; 36(2): 653-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26851020

RESUMO

Development of an effective therapeutic strategy for refractory pancreatic cancer must consider whether chemosensitivity can be induced in chemoresistant cells. We established a pancreatic cancer stem cell-rich cell line using TIG-1 feeder cells and leukemia inhibitory factor (LIF)-rich SNL76/7 conditioned medium. We generated a cell line, namely YNPC031312-B, following isolation of cells from the malignant ascites of a patient with gemcitabine-resistant pancreatic cancer. A YNPC031312-B-Hypoxia cell line was established by maintaining YNPC031312-B cells under tumor-like hypoxic conditions (1% O2). Both cell lines exhibited a pancreatic cancer stem cell phenotype: YNPC031312-B cells were CD24(+)CD44(-)CD133(+)epithelial cell adhesion molecule (EpCAM)(+)alkaline phosphatase(+)Octamer-binding transcription factor (OCT)3/4+and YNPC031312-B-Hypoxia cells were CD24(+)CD44(+)CD133(+)EpCAM(+). YNPC031312-B-Hypoxia cells were larger, had superior migratory ability, and higher gemcitabine sensitivity compared to YNPC031312-B cells. The use of LIF or other factors with similar bioactivity under hypoxic conditions may contribute to the phenotypic change to gemcitabine sensitivity. Our results may aid development of new therapeutic strategies targeting refractory pancreatic cancer.


Assuntos
Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Hipóxia , Fator Inibidor de Leucemia/metabolismo , Complexo Mediador/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas
17.
Cancer Lett ; 374(1): 44-53, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26797459

RESUMO

Hedgehog (Hh) signaling has been found to be activated in breast cancer stem cells (BCSCs). However, the precise role of the BCSCs marker, CD24, remains unclear. Here, we describe a relationship between CD24 and Sonic Hedgehog (SHH), and reveal a role for this relationship in the induction of a malignant phenotype of breast cancer. CD24 siRNA-transfected breast cancer cells (BCCs) demonstrated higher expression of SHH and GLI1, increased anchorage-independent proliferation, and enhanced invasiveness and superior tumorigenicity compared with control. Conversely, CD24 forced-expressing BCCs possessed decreased SHH and GLI1 expression, anchorage-independent proliferation, and invasiveness. Suppression of SHH decreased invasiveness through inhibition of matrix metalloproteinase (MMP)-2 expression, GLI1 expression, anchorage-independent proliferation, tumorigenicity, and tumor volume in vivo in CD24 siRNA transfected BCCs. DNA microarray analysis identified STAT1 as a relationship between CD24 and SHH. CD24 siRNA-transfected BCCs with concurrent STAT1 inhibition exhibited decreased SHH expression, invasiveness, anchorage-independent proliferation, tumorigenicity, and tumor volume in vivo. These results suggest that CD24 suppresses development of a malignant phenotype by down-regulating SHH transcription through STAT1 inhibition. CD24 gene transfer or STAT1 inhibition may represent new effective therapeutic strategies to target refractory breast cancer.


Assuntos
Neoplasias da Mama/terapia , Antígeno CD24/genética , Proteínas Hedgehog/genética , Fator de Transcrição STAT1/antagonistas & inibidores , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Proteínas Hedgehog/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transcrição Genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Drug Deliv ; 22(5): 619-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24344811

RESUMO

Hybrid liposomes (HLs) can be prepared by simply sonicating a mixture of vesicular and micellar molecules in buffer solutions. This study aims to demonstrate inhibitory effects of HLs on the growth of fibroblast-like synoviocytes along with apoptosis and therapeutic effects of HLs in a mouse model with rheumatoid arthritis (RA). HLs composed of 95 mol% L-α-dimyristoylphosphatidylcholine (DMPC) and 5 mol% polyoxyethylene(23)dodecyl ether (C12(EO)23) were prepared by the sonication method. The inhibitory effects of HLs on the growth of human fibroblast-like synoviocytes-RA (HFLS-RA) cells in vitro and their inhibitory mechanism were examined. High inhibitory effects of HLs on the growth of HFLS-RA cells were observed. The induction of apoptosis by HLs was revealed on the basis of flow cytometric analysis. Furthermore, therapeutic effects of HLs in the mouse model with RA were examined in vivo. Our results demonstrate that HLs showed inhibitory effects on the growth of HFLS-RA cells in vitro along with apoptosis and therapeutic effects in mouse models of RA in vivo.


Assuntos
Apoptose/efeitos dos fármacos , Artrite Experimental , Artrite Reumatoide , Proliferação de Células/efeitos dos fármacos , Dimiristoilfosfatidilcolina/farmacologia , Fibroblastos/efeitos dos fármacos , Lipossomos/farmacologia , Polietilenoglicóis/farmacologia , Membrana Sinovial/efeitos dos fármacos , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Camundongos , Membrana Sinovial/citologia
19.
Anticancer Res ; 34(8): 3947-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25075016

RESUMO

Activated lymphocytes have the ability to undergo non-directional cell movement known as random migration, although the biological role for this remains unclear. Herein, we investigated how random migration affects cytotoxicity of activated lymphocytes using time-lapse imaging analysis. The kinetics of random migration paralleled cytotoxicity in activated lymphocytes. Sphingosine-1-phosphate (S1P) and its receptor-1 (S1PR1) play an important role in lymphocyte migration. Phosphorylated FTY720 (FTYP), a structural analog of S1P, significantly inhibited random migration and cytotoxicity of activated CD3(+)NKG2D(+)CD8(+) T-lymphocytes but not CD3(-)NKG2D(+)CD56(+) natural killer (NK) cells. In a mouse xenograft model, FTYP-treated activated lymphocytes exhibited lower cytotoxicity and less tumor infiltration for activated CD3(+)NKG2D(+) T-lymphocytes but not CD3(-)NKG2D(+) NK cells. These results suggest that random migration contributes to the cytotoxicity of activated CD8(+) T-cells but not of NK cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Movimento Celular , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Animais , Feminino , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C
20.
Anticancer Res ; 34(8): 4509-19, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25075094

RESUMO

Cancer stem-like properties of various types of cancer, including pancreatic cancer, one of the most aggressive types, correlate with metastasis, invasion, and therapeutic resistance. More importantly, chemoresistance in cancer stem-like cells (CSLCs) is a critical problem for eradication of pancreatic cancer. Several cell surface markers, such as CD44 and epithelial cell adhesion molecule (EpCAM), are molecular targets on CSLCs of pancreatic carcinoma. In this study, we investigated whether catumaxomab, a clinical-grade bi-specific antibody that binds to both EpCAM on tumor cells and CD3 on T-cells, combined with activated T-cells can eliminate chemoresistant pancreatic CSLCs in vitro. Firstly, we established a CSLC line (MU-PK1) from human pancreatic carcinoma cells derived from a patient with chemoresistant and disseminated pancreatic cancer. These CSLCs were almost completely resistant to gemcitabine-mediated cytotoxicity up to a concentration of 10 µg/ml. The cells expressed high levels of CSLC markers (CD44 and EpCAM) and had significantly higher capacities for sphere formation, invasion, and aldehyde dehydrogenase-1 expression, which are associated with cancer stemness properties. We found that pre-treatment with catumaxomab and subsequent addition of interleukin-2/OKT3 activated autologous T-cells eliminated CSLCs during a short incubation period. Moreover, when MU-PK1 cells were cultured under hypoxic conditions, the CSLCs became more aggressive. However, the combination of cytokine-activated killer T-cells with catumaxomab successfully lysed almost all these cells. In conclusion, catumaxomab combined with activated T-cells may be a potent therapeutic modality to eradicate chemoresistant pancreatic CSLCs.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígenos de Neoplasias/imunologia , Complexo CD3/imunologia , Moléculas de Adesão Celular/imunologia , Ativação Linfocitária , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Linfócitos T/imunologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Molécula de Adesão da Célula Epitelial , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...