Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Mais filtros

Base de dados
Intervalo de ano de publicação
Glob Chang Biol ; 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32020698


Understanding the vulnerability of tree species to anthropogenic threats is important for the efficient planning of restoration and conservation efforts. We quantified and compared the effects of future climate change and four current threats (fire, habitat conversion, overgrazing, and overexploitation) on the 50 most common tree species of the tropical dry forests of northwestern Peru and southern Ecuador. We used an ensemble modelling approach to predict species distribution ranges, employed freely accessible spatial datasets to map threat exposures, and developed a trait-based scoring approach to estimate species-specific sensitivities, using differentiated trait weights in accordance with their expected importance in determining species sensitivities to specific threats. Species-specific vulnerability maps were constructed from the product of the exposure maps and the sensitivity estimates. We found that all 50 species face considerable threats, with an average of 46% of species' distribution ranges displaying high or very high vulnerability to at least one of the five threats. Our results suggest that current levels of habitat conversion, overexploitation, and overgrazing pose larger threats to most of the studied species than climate change. We present a spatially explicit planning strategy for species-specific restoration and conservation actions, proposing management interventions to focus on (i) in-situ conservation of tree populations and seed collection for tree planting activities in areas with low vulnerability to climate change and current threats, (ii) ex-situ conservation or translocation of populations in areas with high climate change vulnerability, and (iii) active planting or assisted regeneration in areas under high current threat vulnerability but low climate change vulnerability, provided that interventions are in place to lower threat pressure. We provide an online, user-friendly tool to visualize both the vulnerability maps and the maps indicating priority restoration and conservation actions.

Ecol Lett ; 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32086879


It has been suggested that biogeographic historical legacies in plant diversity may influence ecosystem functioning. This is expected because of known diversity effects on ecosystem functions, and impacts of historical events such as past climatic changes on plant diversity. However, empirical evidence for a link between biogeographic history and present-day ecosystem functioning is still limited. Here, we explored the relationships between Late-Quaternary climate instability, species-pool size, local species and functional diversity, and the net primary productivity (NPP) of Northern Hemisphere forests using structural equation modelling. Our study confirms that past climate instability has negative effects on plant functional diversity and through that on NPP, after controlling for present-day climate, soil conditions, stand biomass and age. We conclude that global models of terrestrial plant productivity need to consider the biogeographical context to improve predictions of plant productivity and feedbacks with the climate system.

Sci Total Environ ; 699: 134383, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31525545


The adverse effects of soil acidification are extensive and may result in hampered ecosystem functioning. Admixture of tree species with nutrient rich litter has been proposed to restore acidified forest soils and improve forest vitality, productivity and resilience. However, it is common belief that litter effects are insufficiently functional for restoration of poorly buffered sandy soils. Therefore we examined the effect of leaf litter on the forest floor, soil chemistry and soil biota in temperate forest stands along a range of sandy soil types in Belgium, the Netherlands and Germany. Specifically, we address: i) Which tree litter properties contribute most to the mitigation of soil acidification effects and ii) Do rich litter species have the potential to improve the belowground nutrient status of poorly buffered, sandy soils? Our analysis using structural equation modelling shows that litter base cation concentration is the decisive trait for the dominating soil buffering mechanism in forests that are heavily influenced by atmospheric nitrogen (N) deposition. This is in contrast with studies in which leaf litter quality is summarized by C/N ratio. We suggest that the concept of rich litter is context dependent and should consider Liebig's law of the most limiting: if N is not limiting in the ecosystem, litter C/N becomes of low importance, while base cations (calcium, magnesium, potassium) become determining. We further find that on poorly buffered soils, tree species with rich litter induce fast nutrient cycling, sustain higher earthworm biomass and keep topsoil base saturation above a threshold of 30%. Hence, rich litter can trigger a regime shift to the exchange buffer domain in sandy soils. This highlights that admixing tree species with litter rich in base cations is a promising measure to remediate soil properties on acidified sandy soils that receive, or have received, high inputs of N via deposition.

Fenômenos Ecológicos e Ambientais , Monitoramento Ambiental , Florestas , Animais , Bélgica , Biomassa , Alemanha , Países Baixos , Nitrogênio , Oligoquetos , Folhas de Planta , Solo/química , Árvores
Sci Total Environ ; 659: 101-114, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597460


A better understanding of biomass production in secondary forests after cultivation is essential for assessing the resilience of slash and burn systems and their capacity to deliver ecosystem services. Biomass production is influenced by management legacies, landscape configuration and soil, but these drivers are rarely studied simultaneously, nor is the role of changes in vegetation properties in linking them to biomass production. We assessed how management legacies affect biomass in secondary forests created by slash and burn in the central Congo Basin, and tested whether changes in productivity could be attributed to changes in stem density, functional diversity, functional identity or soil. Using data from 6452 trees in 96 fallow plots nested in 3 study sites, we looked for the main determinants of aboveground biomass (AGB) of woody vegetation in fallow systems. Next, using a subset of 58 plots in fallow fields aged 5 to 10 years, we used confirmatory path analysis to explore the relations between management history, soil, vegetation properties and biomass productivity. The sampled fallow fields had, on average, 58.4 (±46.2) Mg ha-1 AGB. AGB was positively related to both fallow age and to the proportion of remnant trees in AGB and negatively related to the number of previous cultivation cycles. Biomass productivity varied with the number of previous slash-and-burn cycles, with notable declines in the fourth cycle. The effect of management history was mainly through a reduction in the dominance of fast growing tree species and in the number of regenerating stems, which were also indirectly affected by an increase in C. odorata cover. Soil fertility status and the biomass of remnant trees also modified biomass productivity. Our findings suggest that under the current management intensity the capacity of the slash and burn system to provide important ecosystem functions, such as carbon sequestration, is declining.

Biomassa , Produção Agrícola/métodos , Florestas , Árvores/crescimento & desenvolvimento , República Democrática do Congo
Glob Chang Biol ; 24(9): 4304-4315, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802782


Understanding the processes that underlie drought-related tree vitality loss is essential for anticipating future forest dynamics, and for developing management plans aiming at increasing the resilience of forests to climate change. Forest vitality has been continuously monitored in Europe since the acid rain alert in the 1980s, and the intensive monitoring plots of ICP Forests offer the opportunity to investigate the effects of air pollution and climate change on forest condition. By making use of over 100 long-term monitoring plots, where crown defoliation has been assessed extensively since 1990, we discovered a progressive shift from a negative to a positive effect of species richness on forest health. The observed tipping point in the balance of net interactions, from competition to facilitation, has never been reported from real ecosystems outside experimental conditions; and the strong temporal consistency of our observations with increasing drought stress emphasizes its climate change relevance. Furthermore, we show that higher species diversity has reduced the severity of defoliation in the long term. Our results confirm the greater resilience of diverse forests to future climate change-induced stress. More generally, they add to an accumulating body of evidence on the large potential of tree species mixtures to face manifold disturbances in a changing world.

Biodiversidade , Mudança Climática , Secas , Herbivoria , Árvores/fisiologia , Bélgica , Fagus/fisiologia , Cadeia Alimentar , Quercus/fisiologia
Sci Total Environ ; 589: 153-164, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28258751


The soil organic carbon (SOC) stock is an important indicator in ecosystem service assessments. Even though a considerable fraction of the total stock is stored in the subsoil, current assessments often consider the topsoil only. Furthermore, mapping efforts are hampered by the limited spatial density of these topsoil measurements. The aim of this study was to assess the SOC stock in the upper 100cm of soil in 30,556ha of Low-Input High-Diversity systems, such as nature reserves, in Flanders (Belgium) and compare this estimate with the stock found in the topsoil (upper 15cm). To this end, we combined depth extrapolation of 139 measurements limited to the topsoil with four digital soil mapping techniques: multiple linear regression, boosted regression trees, artificial neural networks and least-squares support vector machines. Particular attention was given to vegetation characteristics as predictors. For both the stock in the upper 15cm and 100cm, a boosted regression trees approach was most informative as it resulted in the lowest cross-validation errors and provided insights in the relative importance of predictors. The predictors of the stock in the upper 100cm were soil type, groundwater level, clay fraction and community weighted mean (CWM) and variance (CWV) of plant height. These predictors, together with the CWM of specific leaf area, aboveground biomass production, CWV and CWM of rooting depth, terrain slope, CWM of mycorrhizal associations and species diversity also explained the topsoil stock. Our total stock estimates show that focusing on the topsoil (1.63Tg OC) only considers 36% of the stock in the upper 100cm (4.53Tg OC). Given the magnitude of subsoil OC and its dependency on typical ecosystem characteristics, it should not be neglected in regional ecosystem service assessments.