Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 294(4): 1001-1006, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30968248

RESUMO

Otosclerosis is a common form of hearing loss (HL) due to abnormal remodeling of the otic capsule. The genetic causes of otosclerosis remain largely unidentified. Only mutations in a single gene, SERPINF1, were previously published in patients with familial otosclerosis. To unravel the contribution of genetic variation in this gene to otosclerosis, this gene was re-sequenced in a large population of otosclerosis patients and controls. Resequencing of the 5' and 3' UTRs, coding regions, and exon-intron boundaries of SERPINF1 was performed in 1604 unrelated otosclerosis patients and 1538 unscreened controls, and in 62 large otosclerosis families. Our study showed no enrichment of rare variants, stratified by type, in SERPINF1 in patients versus controls. Furthermore, the c.392C > A (p.Ala131Asp) variant, previously reported as pathogenic, was identified in three patients and four controls, not replicating its pathogenic nature. We could also not find evidence for a pathogenic role in otosclerosis for 5' UTR variants in the SERPINF1-012 transcript (ENST00000573763), described as the major transcript in human stapes. Furthermore, no rare variants were identified in the otosclerosis families. This study does not support a pathogenic role for variants in SERPINF1 as a cause of otosclerosis. Therefore, the etiology of the disease remains largely unknown and will undoubtedly be the focus of future studies.


Assuntos
Proteínas do Olho/genética , Fatores de Crescimento Neural/genética , Otosclerose/genética , Análise de Sequência de DNA/métodos , Serpinas/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Linhagem
2.
Eur J Hum Genet ; 27(7): 1033-1043, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30820038

RESUMO

Bicuspid aortic valve (BAV) is the most common congenital heart defect (CHD), affecting 1-2% of the population. BAV is associated with thoracic aortic aneurysms (TAAs). Deleterious copy number variations (CNVs) were found previously in up to 10% of CHD cases. This study aimed at unravelling the contribution of deleterious deletions or duplications in 95 unrelated BAV/TAA patients. Seven unique or rare CNVs were validated, harbouring protein-coding genes with a role in the cardiovascular system. Based on the presence of overlapping CNVs in patients with cardiovascular phenotypes in the DECIPHER database, the identification of similar CNVs in whole-exome sequencing data of 67 BAV/TAA patients and suggested topological domain involvement from Hi-C data, supportive evidence was obtained for two genes (DGCR6 and TBX20) of the seven initially validated CNVs. A rare variant burden analysis using next-generation sequencing data from 637 BAV/TAA patients was performed for these two candidate genes. This revealed a suggestive genetic role for TBX20 in BAV/TAA aetiology, further reinforced by segregation of a rare TBX20 variant with the phenotype within a BAV/TAA family. To conclude, our results do not confirm a significant contribution for deleterious CNVs in BAV/TAA as only one potentially pathogenic CNV (1.05%) was identified. We cannot exclude the possibility that BAV/TAA is occasionally attributed to causal CNVs though, or that certain CNVs act as genetic risk factors by creating a sensitised background for BAV/TAA. Finally, accumulative evidence for TBX20 involvement in BAV/TAA aetiology underlines the importance of this transcription factor in cardiovascular disease.

3.
Eur J Hum Genet ; 27(7): 1044-1053, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30796334

RESUMO

Progressive dilatation of the thoracic aorta leads to thoracic aortic aneurysm (TAA), which is often asymptomatic but predisposes to lethal aortic dissections and ruptures. TAA is a common complication in patients with bicuspid aortic valve (BAV). Recently, rare loss-of-function SMAD6 variants were shown to contribute significantly to the genetic aetiology of BAV/TAA. Intriguingly, patients with craniosynostosis have also been reported to be explained molecularly by similar loss-of-function SMAD6 variants. While significantly reduced penetrance of craniosynostosis has been reported for the SMAD6 variants as such, near-complete penetrance is reached upon co-occurrence with a common BMP2 SNP risk allele. Here, we report on the results of a SMAD6-variant analysis in 473 unrelated non-syndromic TAA patients, of which the SMAD6-positive individuals were also studied for the presence of the BMP2 risk allele. Although only 14% of the TAA patients also presented BAV, all novel likely pathogenic SMAD6 variants (N = 7) were identified in BAV/TAA individuals, further establishing the role of SMAD6 variants to the aetiology of BAV/TAA and revealing limited contribution to TAA development in patients with a tricuspid aortic valve. Familial segregation studies confirmed reduced penetrance (82%) and variable clinical expressivity, with coarctation of the aorta being a common comorbidity. None of our six BMP2+/SMAD6+ patients presented with craniosynostosis. Hence, the proposed digenic model for craniosynostosis was not supported in the presented BAV/TAA cohort, suggesting that additional factors are at play. Finally, our data provide improved insights into the clinical spectrum of SMAD6-related BAV/TAA and has important implications for molecular diagnostics.

4.
Calcif Tissue Int ; 104(6): 613-621, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30726512

RESUMO

Paget's disease of bone (PDB) is a common, late-onset bone disorder characterized by focal increase of bone turnover. Mutations in the SQSTM1 gene are found in up to 40% of patients and recent GWAS have led to novel associations with several loci. RIN3, the candidate gene located at the associated 14q32 locus, has recently been studied in a British cohort to elucidate its contribution to the pathogenesis. In this study, we performed a genetic screening of RIN3 in an unrelated cohort to validate these findings and to further explore genetic variation in this gene in the context of PDB. In our screening, we examined the 5' untranslated region (UTR), the exonic regions and the intron-exon boundaries of the gene in a control cohort and a patient cohort. Our findings show clustering of variation similar to the British cohort and support a protective role for common genetic variation (rs117068593, p.R279C) in the proline-rich region and a functionally relevant role for rare genetic variation in the domains that mediate binding and activation of its interaction partner, Rab5. Additive regression models, fitted for the common variants, validated the association of the rs117068593 variant with the disease (OR+/+ 0.315; OR+/- 0.562). In addition, our analyses revealed a potentially modifying effect of this variant on the age of onset of the disease. In conclusion, our findings support the involvement of genetic variation in RIN3 in PDB and suggest a role for RIN3 as a potential modifier of the age of onset of the disease.

5.
Genet Med ; 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287925

RESUMO

PURPOSE: To characterize new molecular factors implicated in a hereditary congenital facial paresis (HCFP) family and otosclerosis. METHODS: We performed exome sequencing in a four-generation family presenting nonprogressive HCFP and mixed hearing loss (HL). MEPE was analyzed using either Sanger sequencing or molecular inversion probes combined with massive parallel sequencing in 89 otosclerosis families, 1604 unrelated affected subjects, and 1538 unscreened controls. RESULTS: Exome sequencing in the HCFP family led to the identification of a rare segregating heterozygous frameshift variant p.(Gln425Lysfs*38) in MEPE. As the HL phenotype in this family resembled otosclerosis, we performed variant burden and variance components analyses in a large otosclerosis cohort and demonstrated that nonsense and frameshift MEPE variants were significantly enriched in affected subjects (p = 0.0006-0.0060). CONCLUSION: MEPE exerts its function in bone homeostasis by two domains, an RGD and an acidic serine aspartate-rich MEPE-associated (ASARM) motif inhibiting respectively bone resorption and mineralization. All variants associated with otosclerosis are predicted to result in nonsense mediated decay or an ASARM-and-RGD-truncated MEPE. The HCFP variant is predicted to produce an ASARM-truncated MEPE with an intact RGD motif. This difference in effect on the protein corresponds with the presumed pathophysiology of both diseases, and provides a plausible molecular explanation for the distinct phenotypic outcome.

6.
Cell Cycle ; 17(9): 1068-1075, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29911927

RESUMO

Truncating de novo mutations in ADNP have been identified in patients with the Helsmoortel-Van der Aa syndrome. However correlations between the distinct mutations and their impact on the protein have not been studied before. Here we report the effect of mutations in ADNP by examining the expression and subcellular localization of GFP-tagged mutant transcripts in transfected HEK293T cells. ADNP encloses a bipartite nuclear localization signal and we found mutations therein to stall the mutant protein within the cytoplasm. Using immunocytochemistry, we could demonstrate colocalization of wild-type ADNP with heterochromatin. We found mutations presenting a pattern based on the genetic position. For certain mutant proteins enrichment at pericentromeric heterochromatin seems partially lost. Finally, N-terminal truncated ADNP mutants are routed towards cytosolic proteasomal degradation and rescued with the proteasome inhibitor MG132. Our results suggest a correlation between the position of the mutations across the protein, its stability and subcellular localization.

7.
Hum Mutat ; 39(9): 1246-1261, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29924900

RESUMO

Adams-Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next-generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype-phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.

8.
Biol Psychiatry ; 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29724491

RESUMO

BACKGROUND: In genome-wide screening studies for de novo mutations underlying autism and intellectual disability, mutations in the ADNP gene are consistently reported among the most frequent. ADNP mutations have been identified in children with autism spectrum disorder comorbid with intellectual disability, distinctive facial features, and deficits in multiple organ systems. However, a comprehensive clinical description of the Helsmoortel-Van der Aa syndrome is lacking. METHODS: We identified a worldwide cohort of 78 individuals with likely disruptive mutations in ADNP from January 2014 to October 2016 through systematic literature search, by contacting collaborators, and through direct interaction with parents. Clinicians filled in a structured questionnaire on genetic and clinical findings to enable correlations between genotype and phenotype. Clinical photographs and specialist reports were gathered. Parents were interviewed to complement the written questionnaires. RESULTS: We report on the detailed clinical characterization of a large cohort of individuals with an ADNP mutation and demonstrate a distinctive combination of clinical features, including mild to severe intellectual disability, autism, severe speech and motor delay, and common facial characteristics. Brain abnormalities, behavioral problems, sleep disturbance, epilepsy, hypotonia, visual problems, congenital heart defects, gastrointestinal problems, short stature, and hormonal deficiencies are common comorbidities. Strikingly, individuals with the recurrent p.Tyr719* mutation were more severely affected. CONCLUSIONS: This overview defines the full clinical spectrum of individuals with ADNP mutations, a specific autism subtype. We show that individuals with mutations in ADNP have many overlapping clinical features that are distinctive from those of other autism and/or intellectual disability syndromes. In addition, our data show preliminary evidence of a correlation between genotype and phenotype.

9.
Am J Hum Genet ; 102(5): 985-994, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656860

RESUMO

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.

10.
Hum Mutat ; 39(5): 621-634, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29392890

RESUMO

The Loeys-Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor-ß (TGF-ß) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF-ß signaling. More recently, TGF-ß ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF-ß pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF-ß signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.

11.
Bioinformatics ; 34(13): 2254-2262, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452392

RESUMO

Motivation: Computational gene prioritization can aid in disease gene identification. Here, we propose pBRIT (prioritization using Bayesian Ridge regression and Information Theoretic model), a novel adaptive and scalable prioritization tool, integrating Pubmed abstracts, Gene Ontology, Sequence similarities, Mammalian and Human Phenotype Ontology, Pathway, Interactions, Disease Ontology, Gene Association database and Human Genome Epidemiology database, into the prediction model. We explore and address effects of sparsity and inter-feature dependencies within annotation sources, and the impact of bias towards specific annotations. Results: pBRIT models feature dependencies and sparsity by an Information-Theoretic (data driven) approach and applies intermediate integration based data fusion. Following the hypothesis that genes underlying similar diseases will share functional and phenotype characteristics, it incorporates Bayesian Ridge regression to learn a linear mapping between functional and phenotype annotations. Genes are prioritized on phenotypic concordance to the training genes. We evaluated pBRIT against nine existing methods, and on over 2000 HPO-gene associations retrieved after construction of pBRIT data sources. We achieve maximum AUC scores ranging from 0.92 to 0.96 against benchmark datasets and of 0.80 against the time-stamped HPO entries, indicating good performance with high sensitivity and specificity. Our model shows stable performance with regard to changes in the underlying annotation data, is fast and scalable for implementation in routine pipelines. Availability and implementation: http://biomina.be/apps/pbrit/; https://bitbucket.org/medgenua/pbrit. Supplementary information: Supplementary data are available at Bioinformatics online.

12.
J Mol Neurosci ; 64(2): 331, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29353437

RESUMO

The original version of this article unfortunately contained mistakes.

13.
BMC Bioinformatics ; 18(1): 554, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29237398

RESUMO

BACKGROUND: Haloplex targeted resequencing is a popular method to analyze both germline and somatic variants in gene panels. However, involved wet-lab procedures may introduce false positives that need to be considered in subsequent data-analysis. No variant filtering rationale addressing amplicon enrichment related systematic errors, in the form of an all-in-one package, exists to our knowledge. RESULTS: We present pyAmpli, a platform independent parallelized Python package that implements an amplicon-based germline and somatic variant filtering strategy for Haloplex data. pyAmpli can filter variants for systematic errors by user pre-defined criteria. We show that pyAmpli significantly increases specificity, without reducing sensitivity, essential for reporting true positive clinical relevant mutations in gene panel data. CONCLUSIONS: pyAmpli is an easy-to-use software tool which increases the true positive variant call rate in targeted resequencing data. It specifically reduces errors related to PCR-based enrichment of targeted regions.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Bases de Dados Genéticas , Variação Genética , Genômica , Humanos
15.
J Clin Invest ; 127(9): 3543-3556, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28783042

RESUMO

Varicella zoster virus (VZV) typically causes chickenpox upon primary infection. In rare cases, VZV can give rise to life-threatening disease in otherwise healthy people, but the immunological basis for this remains unexplained. We report 4 cases of acute severe VZV infection affecting the central nervous system or the lungs in unrelated, otherwise healthy children who are heterozygous for rare missense mutations in POLR3A (one patient), POLR3C (one patient), or both (two patients). POLR3A and POLR3C encode subunits of RNA polymerase III. Leukocytes from all 4 patients tested exhibited poor IFN induction in response to synthetic or VZV-derived DNA. Moreover, leukocytes from 3 of the patients displayed defective IFN production upon VZV infection and reduced control of VZV replication. These phenotypes were rescued by transduction with relevant WT alleles. This work demonstrates that monogenic or digenic POLR3A and POLR3C deficiencies confer increased susceptibility to severe VZV disease in otherwise healthy children, providing evidence for an essential role of a DNA sensor in human immunity.


Assuntos
Varicela/genética , Herpes Zoster/genética , Mutação , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Alelos , Animais , Criança , Análise Mutacional de DNA , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Herpesvirus Humano 3 , Heterozigoto , Humanos , Leucócitos/metabolismo , Camundongos , Mutação de Sentido Incorreto , Fenótipo
16.
Nat Neurosci ; 20(8): 1043-1051, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628100

RESUMO

Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.


Assuntos
Sequência de Aminoácidos/genética , Transtorno Autístico/genética , Exoma/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Feminino , Humanos , Masculino , Receptores de AMPA/genética , Receptores de Glutamato/genética
17.
Front Physiol ; 8: 400, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659821

RESUMO

Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter ≥ 4.0 cm in adults, or a Z-score ≥ 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype.

18.
J Mol Diagn ; 19(3): 445-459, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28341588

RESUMO

Primary electrical disease (PED) is characterized by cardiac arrhythmias, which can lead to sudden cardiac death in the absence of detectable structural heart disease. PED encompasses a diversity of inherited syndromes, predominantly Brugada syndrome, early repolarization syndrome, long QT syndrome, short QT syndrome, arrhythmogenic right ventricular cardiomyopathy, and catecholaminergic polymorphic ventricular tachycardia. To overcome the diagnostic challenges imposed by the clinical and genetic heterogeneity of PED, we developed a targeted gene panel for next-generation sequencing of 51 PED genes. The amplified samples were sequenced on MiSeq. To validate the panel, 20 Human Polymorphism Study Center samples and 19 positive control samples were used, with a total of 1479 variants. An analytical sensitivity and specificity of 100% and 99.9% were obtained. After validation, we applied the assay to 114 PED patients. We identified 107 variants in 36 different genes, 18 of which were classified as pathogenic or likely pathogenic, 54 variants were of unknown significance, and 35 were classified as likely benign. We can conclude that the PED Multiplex Amplification of Specific Targets for Resequencing Plus assay is a proficient and highly reliable test to routinely screen patients experiencing primary arrhythmias.


Assuntos
Arritmias Cardíacas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Síndrome do QT Longo/genética
19.
Nat Genet ; 49(4): 515-526, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28191889

RESUMO

Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.


Assuntos
Transtorno Autístico/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Feminino , Humanos , Masculino , Mutação/genética , Fenótipo
20.
Gene ; 605: 92-98, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993705

RESUMO

Intellectual disability (ID) affects approximately 1-2% of the general population and is characterized by impaired cognitive abilities. ID is both clinically as well as genetically heterogeneous, up to 2000 genes are estimated to be involved in the emergence of the disease with various clinical presentations. For many genes, only a few patients have been reported and causality of some genes has been questioned upon the discovery of apparent loss-of-function mutations in healthy controls. Description of additional patients strengthens the evidence for the involvement of a gene in the disease and can clarify the clinical phenotype associated with mutations in a particular gene. Here, we present two large four-generation families with a total of 11 males affected with ID caused by mutations in ZNF711, thereby expanding the total number of families with ID and a ZNF711 mutation to four. Patients with mutations in ZNF711 all present with mild to moderate ID and poor speech accompanied by additional features in some patients, including autistic features and mild facial dysmorphisms, suggesting that ZNF711 mutations cause non-syndromic ID.


Assuntos
Transtornos da Articulação/genética , Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/genética , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Deficiência Intelectual/genética , Mutação , Adolescente , Adulto , Transtornos da Articulação/diagnóstico , Transtornos da Articulação/fisiopatologia , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/fisiopatologia , Sequência de Bases , Criança , Exoma , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Análise de Sequência de DNA , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA