Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surgery ; 172(1): 470-475, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489978

RESUMO

BACKGROUND: Delays in admitting high-risk emergency surgery patients to the intensive care unit result in worse outcomes and increased health care costs. We aimed to use interpretable artificial intelligence technology to create a preoperative predictor for postoperative intensive care unit need in emergency surgery patients. METHODS: A novel, interpretable artificial intelligence technology called optimal classification trees was leveraged in an 80:20 train:test split of adult emergency surgery patients in the 2007-2017 American College of Surgeons National Surgical Quality Improvement Program database. Demographics, comorbidities, and laboratory values were used to develop, train, and then validate optimal classification tree algorithms to predict the need for postoperative intensive care unit admission. The latter was defined as postoperative death or the development of 1 or more postoperative complications warranting critical care (eg, unplanned intubation, ventilator requirement ≥48 hours, cardiac arrest requiring cardiopulmonary resuscitation, and septic shock). An interactive and user-friendly application was created. C statistics were used to measure performance. RESULTS: A total of 464,861 patients were included. The mean age was 55 years, 48% were male, and 11% developed severe postoperative complications warranting critical care. The Predictive OpTimal Trees in Emergency Surgery Risk Intensive Care Unit application was created as the user-friendly interface of the complex optimal classification tree algorithms. The number of questions (ie, tree depths) needed to predict intensive care unit admission ranged from 2 to 11. The Predictive OpTimal Trees in Emergency Surgery Risk Intensive Care Unit application had excellent discrimination for predicting the need for intensive care unit admission (C statistics: 0.89 train, 0.88 test). CONCLUSION: We recommend the Predictive OpTimal Trees in Emergency Surgery Risk Intensive Care Unit application as an accurate, artificial intelligence-based tool for predicting severe complications warranting intensive care unit admission after emergency surgery. The Predictive OpTimal Trees in Emergency Surgery Risk Intensive Care Unit application can prove useful to triage patients to the intensive care unit and to potentially decrease failure to rescue in emergency surgery patients.


Assuntos
Inteligência Artificial , Smartphone , Adulto , Cuidados Críticos , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...