Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(44): 14538-14542, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30048031

RESUMO

Rhenium is both a refractory metal and a noble metal that has attractive properties for various applications. Still, synthesis and applications of rhenium thin films have been limited. We introduce herein the growth of both rhenium metal and rhenium nitride thin films by the technologically important atomic layer deposition (ALD) method over a wide deposition temperature range using fast, simple, and robust surface reactions between rhenium pentachloride and ammonia. Films are grown and characterized for compositions, surface morphologies and roughnesses, crystallinities, and resistivities. Conductive rhenium subnitride films of tunable composition are obtained at deposition temperatures between 275 and 375 °C, whereas pure rhenium metal films grow at 400 °C and above. Even a just 3 nm thick rhenium film is continuous and has a low resistivity of about 90 µΩ cm showing potential for applications for which also other noble metals and refractory metals have been considered.

2.
Adv Mater ; 30(24): e1703622, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29315833

RESUMO

2D materials research is advancing rapidly as various new "beyond graphene" materials are fabricated, their properties studied, and materials tested in various applications. Rhenium disulfide is one of the 2D transition metal dichalcogenides that has recently shown to possess extraordinary properties such as that it is not limited by the strict monolayer thickness requirements. The unique inherent decoupling of monolayers in ReS2 combined with a direct bandgap and highly anisotropic properties makes ReS2 one of the most interesting 2D materials for a plethora of applications. Here, a highly controllable and precise atomic layer deposition (ALD) technique is applied to deposit ReS2 thin films. Film growth is demonstrated on large area (5 cm × 5 cm) substrates at moderate deposition temperatures between 120 and 500 °C, and the films are extensively characterized using field emission scanning electron microscopy/energy-dispersive X-ray spectroscopy, X-ray diffractometry using grazing incidence, atomic force microscopy, focused ion beam/transmission electron microscopy, X-ray photoelectron spectroscopy, and time-of-flight elastic recoil detection analysis techniques. The developed ReS2 ALD process highlights the potential of the material for applications beyond planar structure architectures. The ALD process also offers a route to an upgrade to an industrial scale.

3.
Nanotechnology ; 29(5): 055301, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29215346

RESUMO

We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.

4.
Int J Pharm ; 525(1): 160-174, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28432020

RESUMO

Active pharmaceutical ingredients (APIs) are predominantly organic solid powders. Due to their bulk properties many APIs require processing to improve pharmaceutical formulation and manufacturing in the preparation for various drug dosage forms. Improved powder flow and protection of the APIs are often anticipated characteristics in pharmaceutical manufacturing. In this work, we have modified acetaminophen particles with atomic layer deposition (ALD) by conformal nanometer scale coatings in a one-step coating process. According to the results, ALD, utilizing common chemistries for Al2O3, TiO2 and ZnO, is shown to be a promising coating method for solid pharmaceutical powders. Acetaminophen does not undergo degradation during the ALD coating process and maintains its stable polymorphic structure. Acetaminophen with nanometer scale ALD coatings shows slowed drug release. ALD TiO2 coated acetaminophen particles show cytocompatibility whereas those coated with thicker ZnO coatings exhibit the most cytotoxicity among the ALD materials under study when assessed in vitro by their effect on intestinal Caco-2 cells.


Assuntos
Acetaminofen/química , Excipientes/química , Nanotecnologia , Células CACO-2 , Humanos , Pós , Propriedades de Superfície
5.
Nanotechnology ; 26(26): 265304, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26062985

RESUMO

A focused ion beam (FIB) is otherwise an efficient tool for nanofabrication of silicon structures but it suffers from the poor thermal stability of the milled surfaces caused by segregation of implanted gallium leading to severe surface roughening upon already slight annealing. In this paper we show that selective etching with KOH:H2O2 solutions removes the surface layer with high gallium concentration while blocking etching of the surrounding silicon and silicon below the implanted region. This remedies many of the issues associated with gallium FIB nanofabrication of silicon. After the gallium removal sub-nm surface roughness is retained even during annealing. As the etching step is self-limited to a depth of 25-30 nm for 30 keV ions, it is well suited for defining nanoscale features. In what is essentially a reversal of gallium resistless lithography, local implanted areas can be prepared and then subsequently etched away. Nanopore arrays and sub-100 nm trenches can be prepared this way. When protective oxide masks such as Al2O3 grown with atomic layer deposition are used together with FIB milling and KOH:H2O2 etching, ion-induced amorphization can be confined to sidewalls of milled trenches.

6.
J Phys Chem A ; 119(11): 2298-306, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25105932

RESUMO

Bi2Te3 thin films were deposited by atomic layer deposition (ALD) from BiCl3 and (Et3Si)2Te at 160-300 °C. The process was studied in detail, and growth properties typical of ALD were verified. Films were stoichiometric with low impurity content. The film thickness was easily controlled with the number of deposition cycles. Properties of the ALD Bi2Te3 thin films were found to be comparable to those reported in literature for Bi2Te3 films made by other methods. Films crystallized to a rhombohedral phase, and there was a preferred orientation to the growth. Electrical and thermoelectric properties were also determined to be comparable to literature values.

7.
Int J Pharm ; 468(1-2): 112-20, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24726634

RESUMO

Both clodronate and bioactive glass are mostly used alone as treatment in various bone diseases but, they are also known to have beneficial effects in dental application. The same processes that lead to loss of bone can also result in alveolar bone loss. The object of this study was to define the optimal combination of clodronate and bioactive glass (BAG) to be used locally in dentistry. The evaluation was based on measurements and solid state properties obtained with pH, scanning electron microscopy (SEM), differential scanning calorimetric (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and Focused-ion beam (FIB) and energy dispersive X-ray spectroscopic (EDS) mapping. The results indicate that if too much calcium clodronate precipitation is formed, the activity of BAG is affected negatively. As there is more reaction surface to form calcium clodronate, similar to the amount of clodronate present, this reduces the bioactivity of BAG. Therefore, in dental treatment the most suitable BAG and clodronate combination product would have apatite (HA, hydroxyapatite) formation ability and amount of clodronate enough to enhance the bioactivity of BAG allowing HA formation. Based on combinations investigated, the one with 200mg clodronate and 1 g BAG with particle size 0.5-0.8 mm was chosen to be the most promising for local dental application.


Assuntos
Perda do Osso Alveolar/tratamento farmacológico , Conservadores da Densidade Óssea/química , Substitutos Ósseos/química , Ácido Clodrônico/química , Vidro/química , Periodontite/tratamento farmacológico , Conservadores da Densidade Óssea/farmacologia , Substitutos Ósseos/farmacologia , Varredura Diferencial de Calorimetria , Precipitação Química , Química Farmacêutica , Ácido Clodrônico/farmacologia , Cristalografia por Raios X , Combinação de Medicamentos , Estudos de Viabilidade , Humanos , Concentração de Íons de Hidrogênio , Hidroxiapatitas/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Difração de Pó , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Tecnologia Farmacêutica/métodos
8.
Nanotechnology ; 25(11): 115302, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24556713

RESUMO

Combining the strengths of atomic layer deposition (ALD) with focused ion beam (FIB) milling provides new opportunities for making 3D nanostructures with flexible choice of materials. Such structures are of interest in prototyping microelectronic and MEMS devices which utilize ALD grown thin films. As-milled silicon structures suffer from segregation and roughening upon heating, however. ALD processes are typically performed at 200-500 °C, which makes thermal stability of the milled structures a critical issue. In this work Si substrates were milled with different gallium ion beam incident angles and then annealed at 250 °C. The amount of implanted gallium was found to rapidly decrease with increasing incident angle with respect of surface normal, which therefore improves the thermal stability of the milled features. 60° incident angle was found as the best compromise with respect to thermal stability and ease of milling. ALD Al2O3 growth at 250 °C on the gallium FIB milled silicon was possible in all cases, even when segregation was taking place. ALD Al2O3 could be used both for creating a chemically uniform surface and for controlled narrowing of FIB milled trenches.

9.
ACS Appl Mater Interfaces ; 6(3): 1893-901, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24428348

RESUMO

Atomic layer deposition (ALD) is a thin film deposition technique that is based on alternating and saturating surface reactions of two or more gaseous precursors. The excellent conformality of ALD thin films can be exploited for sealing defects in coatings made by other techniques. Here the corrosion protection properties of hard CrN and diamond-like carbon (DLC) coatings on low alloy steel were improved by ALD sealing with 50 nm thick layers consisting of Al2O3 and Ta2O5 nanolaminates or mixtures. In cross sectional images the ALD layers were found to follow the surface morphology of the CrN coatings uniformly. Furthermore, ALD growth into the pinholes of the CrN coating was verified. In electrochemical measurements the ALD sealing was found to decrease the current density of the CrN coated steel by over 2 orders of magnitude. The neutral salt spray (NSS) durability was also improved: on the best samples the appearance of corrosion spots was delayed from 2 to 168 h. On DLC coatings the adhesion of the ALD sealing layers was weaker, but still clear improvement in NSS durability was achieved indicating sealing of the pinholes.

10.
J Phys Chem Lett ; 5(24): 4319-23, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26273981

RESUMO

The atomic layer deposition (ALD) method was applied to grow thin polycrystalline BiFeO3 (BFO) films on Pt/SiO2/Si substrates. The 50 nm thick films were found to exhibit high resistivity, good morphological integrity, and homogeneity achieved by the applied ALD technique. Magnetic characterization revealed saturated magnetization of 25 emu/cm(3) with temperature-dependent coercivity varying from 5 to 530 Oe within the temperature range from 300 to 2 K. Magnetism observed in the films was found to change gradually from ferromagnetic spin ordering to pinned magnetic domain interactions mixed with weak spin-glass-like behavior of magnetically frustrated antiferromagnetic/ferromagnetic (AFM-FM) spin ordering depending on the temperature and magnitude of the applied magnetic field. Antiferromagnetic order of spin cycloids was broken in polycrystalline films by crystal sizes smaller than the cycloid length (∼60 nm). Uncompensated spincycloids and magnetic domain walls were found to be the cause of the high magnetization of the BFO films.

11.
Dalton Trans ; 39(13): 3219-26, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20449450

RESUMO

While searching for bismuth precursors for thin film preparation by atomic layer deposition (ALD) three bismuth alkoxides Bi(O(t)Bu)(3) (1), Bi(OCMe(2)(i)Pr)(3) (2), Bi(OC(i)Pr(3))(3) (3), bismuth beta-diketonate, Bi(thd)(3) (4), and bismuth carboxylate, Bi(O(2)C(t)Bu)(3) (5), were synthesized and evaluated. The compounds were characterized by CHN, NMR, MS, and TGA/SDTA. Earlier unknown crystal structures of compounds 1 and 3 were solved. Compound 1 forms dimeric and loose polymeric structures in the solid state while 3 is strictly monomeric. For compound 2 crystals suitable for complete structure solution could not be grown. Crystallization trials of 2 from hexane and toluene resulted in oxygen bridged tetramer [Bi(2)O(OCMe(2)(i)Pr)(4)](2) (6). Compound 4 has dimeric structure and compound 5 forms loose tetramers as reported earlier. The structure of toluene solvated crystal [Bi(O(2)C(t)Bu)(3)](4).2MeC(6)H(5) (7) was solved. All compounds studied showed relatively good volatility and thermal stability. They were all tested in ALD deposition experiments, in which compound 2 was found to be the most suitable for ALD growth of Bi(2)O(3). It exhibited a clear improvement over Bi precursors studied earlier.

12.
Dalton Trans ; (8): 1181-8, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15252658

RESUMO

Cyclopentadienyl complexes Ba(C5Me5)2(THF)2 (1), Ba(C5Me5)2(A) (A = THF, dien, trien, diglyme, triglyme) (2-5), Ba(Pr(i)3C5H2)2(THF)2 (6), Ba(Bu(t)3C5H2)2(THF) (7), Ba(Me2NC2H4C5Me4)2 (8) and Ba(EtOC2H4C5Me4)2 (9) were prepared and characterised with TGA/SDTA, NMR and MS. Crystal structures of 2, 4, 5, 7, 8 and 9 are presented. All complexes prepared sublime under reduced pressure and complexes 1, 6 and 7 showed volatility also under atmospheric pressure. Complexes 1, 6 and 7 lose the coordinated THF when evaporated while complexes 2-5 are sublimable as complete molecules under reduced pressure. Complexes with bulky cyclopentadienyl ligands (6 and 7) are the most thermally stable and volatile among the prepared barocenes. X-ray structure determinations reveal that all the complexes studied are monomeric. Complexes 1, 7 and 8 were successfully tested in BaTiO3 thin film depositions by atomic layer deposition (ALD).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA