Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Immunol Cell Biol ; 96(10): 1060-1071, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29790605


Premature T-cell immunosenescence with CD57+ CD8+ T-cell accumulation has been linked to immunodeficiency and autoimmunity in primary immunodeficiencies including activated PI3 kinase delta syndrome (APDS). To address whether CD57 marks the typical senescent T-cell population seen in adult individuals or identifies a distinct population in APDS, we compared CD57+ CD8+ T cells from mostly pediatric APDS patients to those of healthy adults with similarly prominent senescent T cells. CD57+ CD8+ T cells from APDS patients were less differentiated with more CD27+ CD28+ effector memory T cells showing increased PD1 and Eomesodermin expression. In addition, transition of naïve to CD57+ CD8+ T cells was not associated with the characteristic telomere shortening. Nevertheless, they showed the increased interferon-gamma secretion, enhanced degranulation and reduced in vitro proliferation typical of senescent CD57+ CD8+ T cells. Thus, hyperactive PI3 kinase signaling favors premature accumulation of a CD57+ CD8+ T-cell population, which shows most functional features of typical senescent T cells, but is different in terms of differentiation and relative telomere shortening. Initial observations indicate that this specific differentiation state may offer the opportunity to revert premature T-cell immunosenescence and its potential contribution to inflammation and immunodeficiency in APDS.

Stem Cell Res Ther ; 9(1): 108, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669575


BACKGROUND: Senolytic drugs are thought to target senescent cells and might thereby rejuvenate tissues. In fact, such compounds were suggested to increase health and lifespan in various murine aging models. So far, effects of senolytic drugs have not been analysed during replicative senescence of human mesenchymal stromal cells (MSCs). METHODS: In this study, we tested four potentially senolytic drugs: ABT-263 (navitoclax), quercetin, nicotinamide riboside, and danazol. The effects of these compounds were analysed during long-term expansion of MSCs, until replicative senescence. Furthermore, we determined the effect on molecular markers for replicative senescence, such as senescence-associated beta-galactosidase staining (SA-ß-gal), telomere attrition, and senescence-associated DNA methylation changes. RESULTS: Co-culture experiments of fluorescently labelled early and late passages revealed that particularly ABT-263 had a significant but moderate senolytic effect. This was in line with reduced SA-ß-gal staining in senescent MSCs upon treatment with ABT-263. However, none of the drugs had significant effects on the maximum number of population doublings, telomere length, or epigenetic senescence predictions. CONCLUSIONS: Of the four tested drugs, only ABT-263 revealed a senolytic effect in human MSCs-and even treatment with this compound did not rejuvenate MSCs with regard to telomere length or epigenetic senescence signature. It will be important to identify more potent senolytic drugs to meet the high hopes for regenerative medicine.