Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Tipo de estudo
Intervalo de ano de publicação
Nat Med ; 24(6): 868-880, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29785028


Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying epigenetic alterations are only partially understood. Here, we analyze the reference epigenome of seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of normal B cell differentiation. We identify that the CLL chromatin landscape is largely influenced by distinct dynamics during normal B cell maturation. Beyond this, we define extensive catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and TCF/LEF transcription factor family binding sites. Although most genetic alterations are not associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies extensive networks of altered regulatory elements and sheds light on the relationship between the genetic and epigenetic architecture of the disease.

Cromatina/metabolismo , Epigenômica , Leucemia Linfocítica Crônica de Células B/genética , Linfócitos B/metabolismo , Sequência de Bases , Estudos de Coortes , Humanos
J Biol Chem ; 293(6): 2183-2194, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29273634


Deubiquitinases are proteases with a wide functional diversity that profoundly impact multiple biological processes. Among them, the ubiquitin-specific protease 36 (USP36) has been implicated in the regulation of nucleolar activity. However, its functional relevance in vivo has not yet been fully described. Here, we report the generation of an Usp36-deficient mouse model to examine the function of this enzyme. We show that Usp36 depletion is lethal in preimplantation mouse embryos, where it blocks the transition from morula to blastocyst during embryonic development. USP36 reduces the ubiquitination levels and increases the stability of the DEAH-box RNA helicase DHX33, which is critically involved in ribosomal RNA synthesis and mRNA translation. In agreement with this finding, O-propargyl-puromycin incorporation experiments, Northern blot, and electron microscopy analyses demonstrated the role of USP36 in ribosomal RNA and protein synthesis. Finally, we show that USP36 down-regulation alters cell proliferation in human cancer cells by inducing both apoptosis and cell cycle arrest, and that reducing DHX33 levels through short hairpin RNA interference has the same effect. Collectively, these results support that Usp36 is essential for cell and organism viability because of its role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, by regulating DHX33 stability.

Blastocisto , RNA Helicases DEAD-box/química , Enzimas Desubiquitinantes/fisiologia , RNA Helicases/química , Ubiquitina Tiolesterase/fisiologia , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Enzimas Desubiquitinantes/genética , Perda do Embrião , Humanos , Camundongos , Camundongos Knockout , Biossíntese de Proteínas , Estabilidade Proteica , RNA Ribossômico , Ubiquitina Tiolesterase/genética
Cancer Cell ; 30(5): 806-821, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27846393


We analyzed the in silico purified DNA methylation signatures of 82 mantle cell lymphomas (MCL) in comparison with cell subpopulations spanning the entire B cell lineage. We identified two MCL subgroups, respectively carrying epigenetic imprints of germinal-center-inexperienced and germinal-center-experienced B cells, and we found that DNA methylation profiles during lymphomagenesis are largely influenced by the methylation dynamics in normal B cells. An integrative epigenomic approach revealed 10,504 differentially methylated regions in regulatory elements marked by H3K27ac in MCL primary cases, including a distant enhancer showing de novo looping to the MCL oncogene SOX11. Finally, we observed that the magnitude of DNA methylation changes per case is highly variable and serves as an independent prognostic factor for MCL outcome.

Metilação de DNA , Elementos Facilitadores Genéticos , Epigenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Linfoma de Célula do Manto/genética , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Simulação por Computador , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição SOXC/genética
Cell Rep ; 13(5): 1059-71, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26565917


Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-?1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxy)methylation, and cell fate determination.

Ciclo Celular , Metilação de DNA , Linfopoese , Plasmócitos/citologia , Células Cultivadas , Humanos , Plasmócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo