Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nanotechnology ; 31(27): 275708, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235041

RESUMO

Since its discovery, the environmental instability of exfoliated black phosphorus (2D bP) has emerged as a challenge that hampers its wide application in chemistry, physics, and materials science. Many studies have been carried out to overcome this drawback. Here we show a relevant enhancement of ambient stability in few-layer bP decorated with nickel nanoparticles as compared to pristine bP. In detail, the behavior of the Ni-functionalized material exposed to ambient conditions in the dark is accurately studied by Transmission Electron Microscopy (TEM), Raman Spectroscopy, and high resolution x-ray Photoemission and Absorption Spectroscopy. These techniques provide a morphological and quantitative insight of the oxidation process taking place at the surface of the bP flakes. In the presence of Ni nanoparticles (NPs), the decay time of 2D bP to phosphorus oxides is more than three time slower compared to pristine bP, demonstrating an improved structural stability within 20 months of observation.

2.
Langmuir ; 36(3): 697-703, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31762273

RESUMO

Fundamental understanding of the correlation between the structure and reactivity of chemically addressable N-heterocyclic carbene (NHC) molecules on various surfaces is essential for the design of functional NHC-based self-assembled monolayers. In this work, we identified the ways by which the deposition of chemically addressable OH-NHCs on Au(111) or Pt(111) surfaces modified the anchoring geometry and chemical reactivity of surface-anchored NHCs. The properties of surface-anchored NHCs were probed by conducting X-ray photoelectron spectroscopy and polarized near-edge X-ray absorption fine structure measurements. While no preferred orientation was identified for OH-NHCs on Pt(111), the anchored molecules adopted a preferred flat-lying position on Au(111). Dehydrogenation and aromatization of the imidazoline ring along with partial hydroxyl oxidation were detected in OH-NHCs that were anchored on Au(111). The dehydrogenation and aromatization reactions were facilitated, along with partial decomposition, for OH-NHCs that were anchored on Pt(111). The spectroscopic results reveal that stronger metal-adsorbate interactions increase the reactivity of surface-anchored OH-NHCs while decreasing their molecular orientational order.

3.
Chemistry ; 25(66): 15009, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31774940

RESUMO

Invited for the cover of this issue are Elad Gross, F. Dean Toste, and co-workers at The Hebrew University and UC Berkeley. The image depicts the flexible anchoring geometry of addressable carbene molecules on Au surface, which upon exposure to reducing conditions changed their orientation from a standing into a flat-lying position. Read the full text of the article at 10.1002/chem.201903434.

4.
Chemistry ; 25(66): 15067-15072, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31394002

RESUMO

The formation of flexible self-assembled monolayers (SAMs) in which an external trigger modifies the geometry of surface-anchored molecules is essential for the development of functional materials with tunable properties. In this work, it is demonstrated that NO2 -functionalized N-heterocyclic carbene molecules (NHCs), which were anchored on Au (111) surface, change their orientation from tilted into flat-lying position following trigger-induced reduction of their nitro groups. DFT calculations identified that the energetic driving force for reorientation was the lower steric hindrance and stronger interactions between the chemically reduced NHCs and the Au surface. The trigger-induced changes in the NHCs' anchoring geometry and chemical functionality modified the work function and the hydrophobicity of the NHC-decorated Au surface, demonstrating the impact of a chemically tunable NHC-based SAM on the properties of the metal surface.

5.
J Phys Chem Lett ; : 5099-5104, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31386382

RESUMO

The development of chemically addressable N-heterocyclic carbene (NHC) based self-assembled monolayers (SAMs) requires in-depth understanding of the influence of NHC's anchoring geometry on its chemical functionality. Herein, it is demonstrated that the chemical reactivity of surface-anchored NO2-functionalized NHCs (NO2-NHCs) can be tuned by modifying the distance between the functional group and the reactive surface, which is governed by the deposition technique. Liquid deposition of NO2-NHCs on Pt(111) induced a SAM in which the NO2-aryl groups were flat-lying on the surface. The high proximity between the NO2 groups and the Pt surface led to high reactivity, and 85% of the NO2 groups were reduced at room temperature. Lower reactivity was obtained with vapor-deposited NO2-NHCs that assumed a preferred upright geometry. The separation between the NO2 groups in the vapor-deposited NO2-NHCs and the reactive surface circumvented their surface-induced reduction, which was facilitated only after exposure to harsher reducing conditions.

6.
Chem Commun (Camb) ; 54(95): 13423-13426, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30427327

RESUMO

Metal-containing enzyme cofactors achieve their unusual reactivity by stabilizing uncommon metal oxidation states with structurally complex ligands. In particular, the specific cofactor promoting both methanogenesis and anaerobic methane oxidation is a porphyrinoid chelated to a nickel(i) atom via a multi-step biosynthetic path, where nickel reduction is achieved through extensive molecular hydrogenation. Here, we demonstrate an alternative route to porphyrin reduction by charge transfer from a selected copper substrate to commercially available 5,10,15,20-tetraphenyl-porphyrin nickel(ii). X-ray absorption measurements at the Ni L3-edge unequivocally show that NiTPP species adsorbed on Cu(100) are stabilized in the highly reactive Ni(i) oxidation state by electron transfer to the molecular orbitals. Our approach highlights how some fundamental properties of synthetically inaccessible biological cofactors may be reproduced by hybridization of simple metalloporphyrins with metal surfaces, with implications towards novel approaches to heterogenous catalysis.


Assuntos
Coenzimas/metabolismo , Metaloporfirinas/metabolismo , Adsorção , Catálise , Coenzimas/química , Cobre/química , Metaloporfirinas/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
7.
Chem Sci ; 9(31): 6523-6531, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30310583

RESUMO

Catalytic nanoparticles are heterogeneous in their nature and even within the simplest particle various surface sites exist and influence the catalytic reactivity. Thus, detailed chemical information at the nanoscale is essential for understanding how surface properties and reaction conditions direct the reactivity of different surface sites of catalytic nanoparticles. In this work, hydroxyl-functionalized N-heterocyclic carbene molecules (NHCs) were anchored to the surface of Pt particles and utilized as chemical markers to detect reactivity variations between different surface sites under liquid and gas phase oxidizing conditions. Differences in the chemical reactivity of surface-anchored NHCs were identified using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 20 nanometers. By conducting IR nanospectroscopy measurements, along with complementary spatially averaged IR and X-ray spectroscopy measurements, we identified that enhanced reactivity occurred on the particles' periphery under both gas and liquid phase oxidizing conditions. Under gas phase reaction conditions the NHCs' hydroxyl functional groups underwent preferential oxidization to the acid along the perimeter of the particle. Exposure of the sample to harsher, liquid phase oxidizing conditions induced modification of the NHCs, which was mostly identified at the particle's periphery. Analysis of X-ray absorption spectroscopy measurements revealed that exposure of the sample to oxidizing conditions induced aromatization of the NHCs, presumably due to oxidative dehydrogenation reaction, along with reorientation of the NHCs from perpendicular to parallel to the Pt surface. These results, based on single particle measurements, demonstrate the high reactivity of surface sites that are located at the nanoparticle's periphery and the influence of reaction conditions on site-dependent reactivity.

8.
Beilstein J Nanotechnol ; 8: 1723-1733, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904833

RESUMO

The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions.

9.
Faraday Discuss ; 204: 453-469, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28770938

RESUMO

Ullmann coupling is the most common approach to form surface-confined one- and two-dimensional conjugated structures from haloaryl derivatives. The dimensions of the formed nanostructures can be controlled by the number and location of halogens within the molecular precursors. Our study illustrates that the type of halogen plays an essential role in the design, orientation, and extent of the surface-confined organometallic and polymeric nanostructures. We performed a comparative analysis of five 1,4-dihalobenzene molecules containing chlorine, bromine, and iodine on Cu(110) using scanning tunneling microscopy, fast-X-ray photoelectron and near edge X-ray absorption fine structure spectroscopies. Our experimental data identify different molecular structures, reaction temperatures and kinetics depending on the halogen type. Climbing image nudged elastic band simulations further clarify these observations by providing distinct diffusion paths for each halogen species. We show that in addition to the structure of the building blocks, the halogen type has a direct influence on the morphology of surface-confined polymeric structures based on Ullmann coupling.

10.
Chem Sci ; 8(5): 3789-3798, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28580111

RESUMO

We performed a combined experimental and theoretical study of the assembly of phenylboronic acid on the Au(111) surface, which is found to lead to the formation of triphenylboroxines by spontaneous condensation of trimers of molecules. The interface between the boroxine group and the gold surface has been characterized in terms of its electronic properties, revealing the existence of an ultra-fast charge delocalization channel in the proximity of the oxygen atoms of the heterocyclic group. More specifically, the DFT calculations show the presence of an unoccupied electronic state localized on both the oxygen atoms of the adsorbed triphenylboroxine and the gold atoms of the topmost layer. By means of resonant Auger electron spectroscopy, we demonstrate that this interface state represents an ultra-fast charge delocalization channel. Boroxine groups are among the most widely adopted building blocks in the synthesis of covalent organic frameworks on surfaces. Our findings indicate that such systems, typically employed as templates for the growth of organic films, can also act as active interlayers that provide an efficient electronic transport channel bridging the inorganic substrate and organic overlayer.

11.
Phys Chem Chem Phys ; 19(2): 1449-1457, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27982139

RESUMO

A number of studies have investigated the properties of monomeric and double-decker phthalocyanines (Pcs) adsorbed on metal surfaces, in view of applications in spintronics devices. In a combined experimental and theoretical study, we consider here a different member of the Pcs family, the (RuPc)2 dimer, whose structure is characterized by two paired up magnetic centers embedded in a double-decker architecture. For (RuPc)2 on Ag(111), we show that this architecture works as a preserving cage by shielding the Ru-Ru pair from a direct interaction with the surface atoms. In fact, while noticeable surface-to-molecule charge transfer occurs with the ensuing quenching of the molecular magnetic moment, such phenomena occur here in the absence of a direct Ru-Ag coupling or structural rearrangement, at variance with other Pcs and thanks to the above shielding effect. These unique properties of the (RuPc)2 architecture are expected to permit an easy control of the surface-to-molecule charge-transfer process as well as of the molecular magnetic properties, thus making the (RuPc)2 dimer a significant paradigm for innovative "cage" structures as well as a promising candidate for applications in spintronics nano or single-molecule devices.

12.
J Am Chem Soc ; 138(51): 16696-16702, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27958750

RESUMO

Surface-confined polymerization via Ullmann coupling is a promising route to create one- and two-dimensional covalent π-conjugated structures, including the bottom-up growth of graphene nanoribbons. Understanding the mechanism of the Ullmann reaction is necessary to provide a platform for rationally controlling the formation of these materials. We use fast X-ray photoelectron spectroscopy (XPS) in kinetic measurements of epitaxial surface polymerization of 1,4-dibromobenzene on Cu(110) and devise a kinetic model based on mean field rate equations, involving a transient state. This state is observed in the energy landscapes calculated by nudged elastic band (NEB) within density functional theory (DFT), which assumes as initial and final geometries of the organometallic and polymeric structures those observed by scanning tunneling microscopy (STM). The kinetic model accounts for all the salient features observed in the experimental curves extracted from the fast-XPS measurements and enables an enhanced understanding of the polymerization process, which is found to follow a nucleation-and-growth behavior preceded by the formation of a transient state.

13.
Angew Chem Int Ed Engl ; 55(46): 14267-14271, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27714900

RESUMO

Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA-like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high-performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors.

14.
Chemistry ; 22(41): 14672-7, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27555424

RESUMO

Herein the formation of water molecules in the intermediate step of the redox reaction of porphyrins self-metalation on O/Cu(111) is demonstrated. Photoemission measurements show that the temperature on which porphyrins pick-up a substrate metal atom on O/Cu(111) is reduced by about 185±15 K with respect to the pure Cu(111). DFT calculations clearly indicate that the formation of a water molecule is less expensive than the formation of H2 on the O/Cu(111) substrate and, in some cases, it can be also exothermic.

15.
ACS Appl Mater Interfaces ; 8(26): 16979-84, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27282201

RESUMO

One of the main challenges in the path to incorporating InGaAs based metal-oxide-semiconductor structures in nanoelectronics is the passivation of high-k/InGaAs interfaces. Here, the oxygen scavenging effect of thin Ti layers on high-k/InGaAs gate stacks was studied. Electrical measurements and synchrotron X-ray photoelectron spectroscopy measurements, with in situ metal deposition, were used. Oxygen removal from the InGaAs native oxide surface layer remotely through interposed Al2O3 and HfO2 layers observed. Synchrotron X-ray photoelectron spectroscopy has revealed a decrease in the intensity of InOx features relative to In in InGaAs after Ti deposition. The signal ratio decreases further after annealing. In addition, Ti 2p spectra clearly show oxidation of the thin Ti layer in the ultrahigh vacuum XPS environment. Using capacitance-voltage and conductance-voltage measurements, Pt/Ti/Al2O3/InGaAs and Pt/Al2O3/InGaAs capacitors were characterized both before and after annealing. It was found that the remote oxygen scavenging from the oxide/semiconductor interface using a thin Ti layer can influence the density of interface traps in the high-k/InGaAs interface.

16.
Nano Lett ; 16(3): 1955-9, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26835843

RESUMO

Charge transport properties of a vertically stacked organic heterojunction based on the amino-carboxylic (A-C) hydrogen bond coupling scheme are investigated by means of X-ray resonant photoemission and the core-hole clock method. We demonstrate that hydrogen bonding in molecular bilayers of benzoic acid/cysteamine (BA/CA) with an A-C coupling scheme opens a site selective pathway for ultrafast charge transport through the junction. Whereas charge transport from single BA layer directly coupled to the Au(111) is very fast and it is mediated by the phenyl group, the interposition of an anchoring layer of CA selectively hinders the delocalization of electrons from the BA phenyl group but opens a fast charge delocalization route through the BA orbitals close to the A-C bond. This evidences that hydrogen bonding established upon A-C recognition can be exploited to spatially/orbitally manipulate the charge transport properties of heteromolecular junctions.


Assuntos
Ácido Benzoico/química , Cisteamina/química , Transporte de Elétrons , Ouro/química , Ligação de Hidrogênio , Modelos Moleculares , Propriedades de Superfície
17.
J Phys Chem Lett ; 7(1): 90-5, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26651535

RESUMO

We report the interface energetics of decacyclene trianhydride (DTA) monolayers on top of two distinct model surfaces, namely, Au(111) and Ag(111). On the latter, combined valence band photoemission and X-ray absorption measurements that access the occupied and unoccupied molecular orbitals, respectively, reveal that electron transfer from substrate to surface sets in. Density functional theory calculations confirm our experimental findings and provide an understanding not only of the photoemission and X-ray absorption spectral features of this promising organic semiconductor but also of the fingerprints associated with the interface charge transfer.

18.
ACS Nano ; 9(9): 8697-709, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26079254

RESUMO

We report the formation of dimethyl sulfoxide (DMSO) molecular complexes on Au(111) enabled by native gold adatoms unusually linking the molecules via a bonding of ionic nature, yielding a mutual stabilization between molecules and adatom(s). DMSO is a widely used polar, aprotic solvent whose interaction with metal surfaces is not fully understood. By combining X-ray photoelectron spectroscopy, low temperature scanning tunneling microscopy, and density functional theory (DFT) calculations, we show that DMSO molecules form complexes made by up to four molecules arranged with adjacent oxygen terminations. DFT calculations reveal that most of the observed structures are accurately reproduced if, and only if, the negatively charged oxygen terminations are linked by one or two positively charged Au adatoms. A similar behavior was previously observed only in nonstoichiometric organic salt layers, fabricated using linkage alkali atoms and strongly electronegative molecules. These findings suggest a motif for anchoring organic adlayers of polar molecules on metal substrates and also provide nanoscale insight into the interaction of DMSO with gold.

19.
Chemistry ; 20(44): 14296-304, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25200655

RESUMO

We explore a photochemical approach to achieve an ordered polymeric structure at the sub-monolayer level on a metal substrate. In particular, a tetraphenylporphyrin derivative carrying para-amino-phenyl functional groups is used to obtain extended and highly ordered molecular wires on Ag(110). Scanning tunneling microscopy and density functional theory calculations reveal that porphyrin building blocks are joined through azo bridges, mainly as cis isomers. The observed highly stereoselective growth is the result of adsorbate/surface interactions, as indicated by X-ray photoelectron spectroscopy. At variance with previous studies, we tailor the formation of long-range ordered structures by the separate control of the surface molecular diffusion through sample heating, and of the reaction initiation through light absorption. This previously unreported approach shows that the photo-induced covalent stabilization of self-assembled molecular monolayers to obtain highly ordered surface covalent organic frameworks is viable by a careful choice of the precursors and reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA