Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 61(3): 413-421, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31941672

RESUMO

Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl-prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl-prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ∼4 months of age, both male and female Zmpste24 -/- mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl-prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24-knockout mice. To boost farnesyl-prelamin A levels, we bred in the "prelamin A-only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl-prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.

2.
Mol Metab ; 30: 30-47, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767179

RESUMO

OBJECTIVE: Lipocalin-2 (LCN2) is a secreted protein involved in innate immunity and has also been associated with several cardiometabolic traits in both mouse and human studies. However, the causal relationship of LCN2 to these traits is unclear, and most studies have examined only males. METHODS: Using adeno-associated viral vectors we expressed LCN2 in either adipose or liver in a tissue specific manner on the background of a whole-body Lcn2 knockout or wildtype mice. Metabolic phenotypes including body weight, body composition, plasma and liver lipids, glucose homeostasis, insulin resistance, mitochondrial phenotyping, and metabolic cage studies were monitored. RESULTS: We studied the genetics of LCN2 expression and associated clinical traits in both males and females in a panel of 100 inbred strains of mice (HMDP). The natural variation in Lcn2 expression across the HMDP exhibits high heritability, and genetic mapping suggests that it is regulated in part by Lipin1 gene variation. The correlation analyses revealed striking tissue dependent sex differences in obesity, insulin resistance, hepatic steatosis, and dyslipidemia. To understand the causal relationships, we examined the effects of expression of LCN2 selectively in liver or adipose. On a Lcn2-null background, LCN2 expression in white adipose promoted metabolic disturbances in females but not males. It acted in an autocrine/paracrine manner, resulting in mitochondrial dysfunction and an upregulation of inflammatory and fibrotic genes. On the other hand, on a null background, expression of LCN2 in liver had no discernible impact on the traits examined despite increasing the levels of circulating LCN2 more than adipose LCN2 expression. The mechanisms underlying the sex-specific action of LCN2 are unclear, but our results indicate that adipose LCN2 negatively regulates its receptor, LRP2 (or megalin), and its repressor, ERα, in a female-specific manner and that the effects of LCN2 on metabolic traits are mediated in part by LRP2. CONCLUSIONS: Following up on our population-based studies, we demonstrate that LCN2 acts in a highly sex- and tissue-specific manner in mice. Our results have important implications for human studies, emphasizing the importance of sex and the tissue source of LCN2.

3.
Elife ; 82019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31644425

RESUMO

Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor α in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Rα deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.

4.
Arterioscler Thromb Vasc Biol ; 39(9): 1776-1786, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31340670

RESUMO

OBJECTIVE: Air pollution is associated with increased cardiovascular morbidity and mortality, as well as dyslipidemia and metabolic syndrome. Our goal was to dissect the mechanisms involved. Approach and Results: We assessed the effects of exposure to air pollution on lipid metabolism in mice through assessment of plasma lipids and lipoproteins, oxidized fatty acids 9-HODE (9-hydroxyoctadecadienoic) and 13-HODE (13-hydroxyoctadecadienoic), lipid, and carbohydrate metabolism. Findings were corroborated, and mechanisms were further assessed in HepG2 hepatocytes in culture. ApoE knockout mice exposed to inhaled diesel exhaust (DE, 6 h/d, 5 days/wk for 16 weeks) exhibited elevated plasma cholesterol and triglyceride levels, increased hepatic triglyceride content, and higher hepatic levels of 9-HODE and 13-HODE, as compared to control mice exposed to filtered air. A direct effect of DE exposure on hepatocytes was demonstrated by treatment of HepG2 cells with a methanol extract of DE particles followed by loading with oleic acid. As observed in vivo, this led to increased triglyceride content and significant downregulation of ACAD9 mRNA expression. Treatment of HepG2 cells with DE particles and oleic acid did not alter de novo lipogenesis but inhibited total, mitochondrial, and ATP-linked oxygen consumption rate, indicative of mitochondrial dysfunction. Treatment of isolated mitochondria, prepared from mouse liver, with DE particles and oleic acid also inhibited mitochondrial complex activity and ß-oxidation. CONCLUSIONS: DE exposure leads to dyslipidemia and liver steatosis in ApoE knockout mice, likely due to mitochondrial dysfunction and decreased lipid catabolism.

5.
Cell Rep ; 27(12): 3413-3421.e3, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216464

RESUMO

Hair plays important roles, ranging from the conservation of body heat to the preservation of psychological well-being. Hair loss or alopecia affects millions worldwide, but methods that can be used to regrow hair are lacking. We report that quiescent (telogen) hair follicles can be stimulated to initiate anagen and hair growth by small molecules that activate autophagy, including the metabolites α-ketoglutarate (α-KG) and α-ketobutyrate (α-KB), and the prescription drugs rapamycin and metformin, which impinge on mTOR and AMPK signaling. Stimulation of hair growth by these agents is blocked by specific autophagy inhibitors, suggesting a mechanistic link between autophagy and hair regeneration. Consistently, increased autophagy is detected upon anagen entry during the natural hair follicle cycle, and oral α-KB prevents hair loss in aged mice. Our finding that anagen can be pharmacologically activated in telogen skin when natural anagen-inducing signal(s) are absent has implications for the treatment of hair loss patients.

6.
Mol Metab ; 25: 50-63, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31027994

RESUMO

OBJECTIVE: Obesity has increased to pandemic levels and enhanced understanding of adipose regulation is required for new treatment strategies. Although bone morphogenetic proteins (BMPs) influence adipogenesis, the effect of BMP antagonists such as Noggin is largely unknown. The aim of the study was to define the role of Noggin, an extracellular BMP inhibitor, in adipogenesis. METHODS: We generated adipose-derived progenitor cells and a mouse model with adipocyte-specific Noggin deletion using the AdiponectinCre transgenic mouse, and determined the adipose phenotype of Noggin-deficiency. RESULTS: Our studies showed that Noggin is expressed in progenitor cells but declines in adipocytes, possibly allowing for lipid accumulation. Correspondingly, adipocyte-specific Noggin deletion in vivo promoted age-related obesity in both genders with no change in food intake. Although the loss of Noggin caused white adipose tissue hypertrophy, and whitening and impaired function in brown adipose tissue in both genders, there were clear gender differences with the females being most affected. The females had suppressed expression of brown adipose markers and thermogenic genes including peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1alpha) and uncoupling protein 1 (UCP1) as well as genes associated with adipogenesis and lipid metabolism. The males, on the other hand, had early changes in a few BAT markers and thermogenic genes, but the main changes were in the genes associated with adipogenesis and lipid metabolism. Further characterization revealed that both genders had reductions in VO2, VCO2, and RER, whereas females also had reduced heat production. Noggin was also reduced in diet-induced obesity in inbred mice consistent with the obesity phenotype of the Noggin-deficient mice. CONCLUSIONS: BMP signaling regulates female and male adipogenesis through different metabolic pathways. Modulation of adipose tissue metabolism by select BMP antagonists may be a strategy for long-term regulation of age-related weight gain and obesity.

7.
Cell Metab ; 29(4): 932-949.e4, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30639359

RESUMO

We studied sex differences in over 50 cardio-metabolic traits in a panel of 100 diverse inbred strains of mice. The results clearly showed that the effects of sex on both clinical phenotypes and gene expression depend on the genetic background. In support of this, genetic loci associated with the traits frequently showed sex specificity. For example, Lyplal1, a gene implicated in human obesity, was shown to underlie a sex-specific locus for diet-induced obesity. Global gene expression analyses of tissues across the panel implicated adipose tissue "beiging" and mitochondrial functions in the sex differences. Isolated mitochondria showed gene-by-sex interactions in oxidative functions, such that some strains (C57BL/6J) showed similar function between sexes, whereas others (DBA/2J and A/J) showed increased function in females. Reduced adipose mitochondrial function in males as compared to females was associated with increased susceptibility to obesity and insulin resistance. Gonadectomy studies indicated that gonadal hormones acting in a tissue-specific manner were responsible in part for the sex differences.

8.
Antioxidants (Basel) ; 8(1)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641857

RESUMO

(1) Background: Paraoxonase 2 (PON2) is a ubiquitously expressed protein localized to endoplasmic reticulum and mitochondria. Previous studies have shown that PON2 exhibits anti-oxidant and anti-inflammatory functions, and PON2-deficient (PON2-def) mice are more susceptible to atherosclerosis. Furthermore, PON2 deficiency leads to impaired mitochondrial function. (2) Methods: In this study, we examined the susceptibility of PON2-def mice to diet-induced obesity. (3) Results: After feeding of an obesifying diet, the PON2-def mice exhibited significantly increased body weight due to increased fat mass weight as compared to the wild-type (WT) mice. The increased adiposity was due, in part, to increased adipocyte hypertrophy. PON2-def mice had increased fasting insulin levels and impaired glucose tolerance after diet-induced obesity. PON2-def mice had decreased oxygen consumption and energy expenditure. Furthermore, the oxygen consumption rate of subcutaneous fat pads from PON2-def mice was lower compared to WT mice. Gene expression analysis of the subcutaneous fat pads revealed decreased expression levels of markers for beige adipocytes in PON2-def mice. (4) Conclusions: We concluded that altered systemic energy balance, perhaps due to decreased beige adipocytes and mitochondrial dysfunction in white adipose tissue of PON2-def mice, leads to increased obesity in these mice.

9.
Cell Metab ; 27(5): 1138-1155.e6, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719227

RESUMO

Inter-tissue communication via secreted proteins has been established as a vital mechanism for proper physiologic homeostasis. Here, we report a bioinformatics framework using a mouse reference population, the Hybrid Mouse Diversity Panel (HMDP), which integrates global multi-tissue expression data and publicly available resources to identify and functionally annotate novel circuits of tissue-tissue communication. We validate this method by showing that we can identify known as well as novel endocrine factors responsible for communication between tissues. We further show the utility of this approach by identification and mechanistic characterization of two new endocrine factors. Adipose-derived Lipocalin-5 is shown to enhance skeletal muscle mitochondrial function, and liver-secreted Notum promotes browning of white adipose tissue, also known as "beiging." We demonstrate the general applicability of the method by providing in vivo evidence for three additional novel molecules mediating tissue-tissue interactions.


Assuntos
Sistema Endócrino/metabolismo , Homeostase , Lipocalinas/metabolismo , Proteômica/métodos , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(24): E5566-E5575, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844188

RESUMO

Although significant progress has been made in understanding epigenetic regulation of in vitro adipogenesis, the physiological functions of epigenetic regulators in metabolism and their roles in obesity remain largely elusive. Here, we report that KDM4B (lysine demethylase 4B) in adipose tissues plays a critical role in energy balance, oxidation, lipolysis, and thermogenesis. Loss of KDM4B in mice resulted in obesity associated with reduced energy expenditure and impaired adaptive thermogenesis. Obesity in KDM4B-deficient mice was accompanied by hyperlipidemia, insulin resistance, and pathological changes in the liver and pancreas. Adipocyte-specific deletion of Kdm4b revealed that the adipose tissues were the main sites for KDM4B antiobesity effects. KDM4B directly controlled the expression of multiple metabolic genes, including Ppargc1a and Ppara Collectively, our studies identify KDM4B as an essential epigenetic factor for the regulation of metabolic health and maintaining normal body weight in mice. KDM4B may provide a therapeutic target for treatment of obesity.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Doenças Metabólicas/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Epigênese Genética/fisiologia , Resistência à Insulina/fisiologia , Lipólise/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Termogênese/fisiologia
11.
Diabetes Metab Syndr Obes ; 11: 65-84, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29618935

RESUMO

Background: Follistatin (Fst) promotes brown adipocyte characteristics in adipose tissues. Methods: Abdominal fat volume (CT scan), glucose clearance (GTT test), and metabolomics analysis (mass spectrometry) of adipose tissues from Fst transgenic (Fst-Tg) and wild type (WT) control mice were analyzed. Oxygen consumption (Seahorse Analyzer) and lipidomics (gas chromatography) was analyzed in 3T3-L1 cells. Results: Fst-Tg mice show significant decrease in abdominal fat content, increased glucose clearance, improved plasma lipid profiles and significant changes in several conventional metabolites compared to the WT mice. Furthermore, overexpression of Fst in 3T3-L1 cells resulted in up regulation of key brown/beige markers and changes in lipidomics profiles. Conclusion: Fst modulates key factors involved in promoting metabolic syndrome and could be used for therapeutic intervention.

12.
Oncotarget ; 9(3): 4044-4060, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423103

RESUMO

Metformin is a widely used agent for the treatment of diabetes and infertility, however, it has been found to have anti-cancer effects in a variety of malignancies including high grade serous ovarian cancer (HGSC). Studies describing the mechanisms by which metformin affects HGSC are ongoing, but detailed analysis of its effect on the cellular metabolism of both HGSC cells and their precursor, normal fallopian tube secretory epithelial cells (FTSECs), is lacking. We addressed the effects of metformin and the more potent biguanide, phenformin, on HGSC cell lines and normal immortalized FTSECs. Cell proliferation assays identified that FTSECs and a subset of HGSC cell lines are relatively resistant to the anti-proliferative effects of metformin. Bioenergetic and metabolomic analyses were used to metabolically differentiate the metformin-sensitive and metformin-resistant cell lines. Bioenergetically, biguanides elicited a significant decrease in mitochondrial respiration in all HGSC cells and FTSECs. However, biguanides had a greater effect on mitochondrial respiration in metformin sensitive cells. Metabolomic analysis revealed that metformin and phenformin generally induce similar changes in metabolic profiles. Biguanide treatment led to a significant increase in NADH in FTSECs and HGSC cells. Interestingly, biguanide treatment induced changes in the levels of mitochondrial shuttle metabolites, glycerol-3-phopshate (G3P) and aspartate, specifically in HGSC cell lines and not in FTSECs. Greater alterations in G3P or aspartate levels were also found in metformin sensitive cells relative to metformin resistant cells. These data identify bioenergetic and HGSC-specific metabolic effects that correlate with metformin sensitivity and novel metabolic avenues for possible therapeutic intervention.

13.
J Lipid Res ; 59(3): 429-438, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29295820

RESUMO

Diet1 modulates intestinal production of the hormone, fibroblast growth factor (FGF)15, which signals in liver to regulate bile acid synthesis. C57BL/6ByJ mice with a spontaneous Diet1-null mutation are resistant to hypercholesterolemia compared with wild-type C57BL/6J mice through enhanced cholesterol conversion to bile acids. To further characterize the role of Diet1 in metabolism, we generated Diet1-/- mice on the C57BL/6J genetic background. C57BL/6J Diet1-/- mice had elevated bile acid levels, reduced Fgf15 expression, and increased gastrointestinal motility and intestinal luminal water content, which are symptoms of bile acid diarrhea (BAD) in humans. Natural genetic variation in Diet1 mRNA expression levels across 76 inbred mouse strains correlated positively with Ffg15 mRNA and negatively with serum bile acid levels. This led us to investigate the role of DIET1 genetic variation in primary BAD patients. We identified a DIET1 coding variant (rs12256835) that had skewed prevalence between BAD cases and controls. This variant causes an H1721Q amino acid substitution that increases the levels of FGF19 protein secreted from cultured cells. We propose that genetic variation in DIET1 may be a determinant of FGF19 secretion levels, and may affect bile acid metabolism in both physiological and pathological conditions.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte/metabolismo , Diarreia/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Ácidos e Sais Biliares/genética , Proteínas de Transporte/genética , Diarreia/genética , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Variação Genética/genética , Genótipo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
14.
J Biol Chem ; 293(13): 4735-4751, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378845

RESUMO

Estrogen receptor α (ERα) action plays an important role in pancreatic ß-cell function and survival; thus, it is considered a potential therapeutic target for the treatment of type 2 diabetes in women. However, the mechanisms underlying the protective effects of ERα remain unclear. Because ERα regulates mitochondrial metabolism in other cell types, we hypothesized that ERα may act to preserve insulin secretion and promote ß-cell survival by regulating mitochondrial-endoplasmic reticulum (EndoRetic) function. We tested this hypothesis using pancreatic islet-specific ERα knockout (PERαKO) mice and Min6 ß-cells in culture with Esr1 knockdown (KD). We found that Esr1-KD promoted reactive oxygen species production that associated with reduced fission/fusion dynamics and impaired mitophagy. Electron microscopy showed mitochondrial enlargement and a pro-fusion phenotype. Mitochondrial cristae and endoplasmic reticulum were dilated in Esr1-KD compared with ERα replete Min6 ß-cells. Increased expression of Oma1 and Chop was paralleled by increased oxygen consumption and apoptosis susceptibility in ERα-KD cells. In contrast, ERα overexpression and ligand activation reduced both Chop and Oma1 expression, likely by ERα binding to consensus estrogen-response element sites in the Oma1 and Chop promoters. Together, our findings suggest that ERα promotes ß-cell survival and insulin secretion through maintenance of mitochondrial fission/fusion-mitophagy dynamics and EndoRetic function, in part by Oma1 and Chop repression.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Receptor alfa de Estrogênio/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Animais , Sobrevivência Celular , Receptor alfa de Estrogênio/genética , Feminino , Insulina/genética , Insulina/metabolismo , Metaloproteases/biossíntese , Metaloproteases/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição CHOP/biossíntese , Fator de Transcrição CHOP/genética
15.
Cell Syst ; 6(1): 103-115.e7, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361464

RESUMO

The etiology of non-alcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, is poorly understood. To understand the causal mechanisms underlying NAFLD, we conducted a multi-omics, multi-tissue integrative study using the Hybrid Mouse Diversity Panel, consisting of ∼100 strains of mice with various degrees of NAFLD. We identified both tissue-specific biological processes and processes that were shared between adipose and liver tissues. We then used gene network modeling to predict candidate regulatory genes of these NAFLD processes, including Fasn, Thrsp, Pklr, and Chchd6. In vivo knockdown experiments of the candidate genes improved both steatosis and insulin resistance. Further in vitro testing demonstrated that downregulation of both Pklr and Chchd6 lowered mitochondrial respiration and led to a shift toward glycolytic metabolism, thus highlighting mitochondria dysfunction as a key mechanistic driver of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Genômica/métodos , Células HEK293 , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos/genética , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Proteômica/métodos , Proteínas Ribossômicas/genética , Transcriptoma
16.
Cell ; 172(1-2): 218-233.e17, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29249357

RESUMO

Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the limiters of energy expenditure are largely unknown. Here, we show that ablation of the anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone marrow cells as the source of the IL-10 signal and adipocytes as the target cell type mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is induced in response to differentiation, obesity, and aging. Assay for transposase-accessible chromatin sequencing (ATAC-seq), ChIP-seq, and RNA-seq reveal that IL-10 represses the transcription of thermogenic genes in adipocytes by altering chromatin accessibility and inhibiting ATF and C/EBPß recruitment to key enhancer regions. These findings expand our understanding of the relationship between inflammatory signaling pathways and adipose tissue function and provide insight into the physiological control of thermogenesis that could inform future therapy.


Assuntos
Adipócitos/metabolismo , Montagem e Desmontagem da Cromatina , Metabolismo Energético , Interleucina-10/metabolismo , Termogênese , Fatores Ativadores da Transcrição/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular , Células Cultivadas , Interleucina-10/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
17.
Elife ; 62017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231167

RESUMO

The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy.


Assuntos
Células-Tronco Embrionárias/citologia , Glucose/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Nucleotídeos/biossíntese , Animais , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Via de Pentose Fosfato , Gravidez , Edulcorantes/farmacologia
18.
Endocrinology ; 158(5): 1217-1230, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28324027

RESUMO

We previously demonstrated that Fst expression is highest in brown adipose tissue (BAT) and skeletal muscle, but is also present at substantial levels in epididymal and subcutaneous white adipose tissues (WATs). Fst promotes mouse brown preadipocyte differentiation and promotes browning during differentiation of mouse embryonic fibroblasts. Fst-transgenic (Fst-Tg) mice show substantial increases in circulating Fst levels and increased brown adipose mass. BAT of Fst-Tg mice had increased expression of brown adipose-associated markers including uncoupling protein 1 (UCP1), PRDM16, PGC-1α, and Glut4. WATs from Fst-Tg mice show upregulation of brown/beige adipose markers and significantly increased levels of phosphorylated p38 MAPK/ERK1/2 proteins compared with the wild-type (WT) mice. Pharmacological inhibition of pp38 MAPK/pERK1/2 pathway of recombinant mouse Fst (rFst) treated differentiating 3T3-L1 cells led to significant blockade of Fst-induced UCP1 protein expression. On the other hand, BAT from Fst-Tg mice or differentiating mouse BAT cells treated with rFst show dramatic increase in Myf5 protein levels as well as upregulation of Zic1 and Lhx8 gene expression. Myf5 levels were significantly downregulated in Fst knock-out embryos and small inhibitory RNA-mediated inhibition of Myf5 led to significant inhibition of UCP1, Lhx8, and Zic1 gene expression and significant blockade of Fst-induced induction of UCP1 protein expression in mouse BAT cells. Both interscapular BAT and WAT tissues from Fst-Tg mice display enhanced response to CL316,243 treatment and decreased expression of pSmad3 compared with the WT mice. Therefore, our results indicate that Fst promotes brown adipocyte characteristics in both WAT and BAT depots in vivo through distinct mechanisms.


Assuntos
Adipócitos Marrons/fisiologia , Adipócitos Brancos/fisiologia , Diferenciação Celular/genética , Transdiferenciação Celular/genética , Folistatina/fisiologia , Células 3T3-L1 , Tecido Adiposo Marrom/anatomia & histologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/anatomia & histologia , Tecido Adiposo Branco/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Folistatina/sangue , Folistatina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética , Termogênese/genética
19.
J Biol Chem ; 291(48): 24880-24891, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27694445

RESUMO

Phosphatidylcholine (PC) is a major phospholipid of mitochondria, comprising 40-50% of both the outer and the inner membranes. However, PC must be imported from its production organelles because mitochondria lack the enzymes essential for PC biosynthesis. In a previous study, we found that StarD7 mediates the intracellular transfer of PC to mitochondria. Therefore, in this study, we analyzed the contribution of StarD7 to the maintenance of mitochondrial phospholipid content and function using siRNA-mediated knockdown and knock-out (KO) of the StarD7 gene in HEPA-1 cells. Real time analysis of respiratory activity demonstrated that the oxygen consumption rate and activity of mitochondrial complexes were impaired in StarD7-KD cells. To confirm these results, we established StarD7-KO HEPA-1 cells by double nicking using CRISPR/Cas9n. As expected, StarD7-KD and -KO cells showed a significant reduction in mitochondrial PC content. The ATP level and growth rate of KO cells were notably lower compared with wild-type cells when cultured in glucose-free galactose-containing medium to force cells to rely on mitochondrial ATP production. In KO cells, the level of the MTCO1 protein, a primary subunit of complex IV, was reduced without a concomitant decrease in its mRNA, but the level was restored when StarD7-I was overexpressed. StarD7-KO cells showed impaired formation of the mitochondrial supercomplexes and exhibited a disorganized cristae structure, with no changes in optic atrophy 1 protein. These findings indicate that StarD7 plays important roles in maintaining the proper composition of mitochondrial phospholipids as well as mitochondrial function and morphogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Consumo de Oxigênio/fisiologia , Fosfatidilcolinas/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Fosfatidilcolinas/genética
20.
J Neurosci Res ; 94(12): 1434-1450, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27680492

RESUMO

The primary energy sources of mammalian cells are proteins, fats, and sugars that are processed by well-known biochemical mechanisms that have been discovered and studied in 1G (terrestrial gravity). Here we sought to determine how simulated microgravity (sim-µG) impacts both energy and lipid metabolism in oligodendrocytes (OLs), the myelin-forming cells in the central nervous system. We report increased mitochondrial respiration and increased glycolysis 24 hr after exposure to sim-µG. Moreover, examination of the secretome after 3 days' exposure of OLs to sim-µG increased the Krebs cycle (Krebs and Weitzman, ) flux in sim-µG. The secretome study also revealed a significant increase in the synthesis of fatty acids and complex lipids such as 1,2-dipalmitoyl-GPC (5.67); lysolipids like 1-oleoyl-GPE (4.48) were also increased by microgravity. Although longer-chain lipids were not observed in this study, it is possible that at longer time points OLs would have continued moving forward toward the synthesis of lipids that constitute myelin. For centuries, basic developmental biology research has been the pillar of an array of discoveries that have led to clinical applications; we believe that studies using microgravity will open new avenues to our understanding of the brain in health and disease-in particular, to the discovery of new molecules and mechanisms impossible to unveil while in 1G. © 2016 Wiley Periodicals, Inc.


Assuntos
Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Oligodendroglia/metabolismo , Simulação de Ausência de Peso , Células Cultivadas , Ciclo do Ácido Cítrico , Metabolismo Energético , Glicólise , Humanos , Bainha de Mielina/metabolismo , Células-Tronco Neurais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA