Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32649799

RESUMO

We report a mononuclear iron(III) porphyrin compound exhibiting unexpectedly slow magnetic relaxation which is a characteristic of single-ion magnet behaviour. This behaviour originates from the close proximity (≈ 550 cm -1 ) of the intermediate-spin S = 3/2 excited states to the high-spin S = 5/2 ground state. More quantitatively, although the ground state is mostly S = 5/2, a spin-admixture model evidences a sizable contribution (≈ 15%) of S = 3/2 to the ground state, which as a consequence experiences large and positive axial anisotropy ( D = +19.2 cm -1 ). Frequency-domain EPR allowed us to directly access the m S = |±1/2〉 → |±3/2〉 transitions, thus unambiguously measuring the very large zero-field splitting (ZFS) in this 3d 5 system. Other experimental results including magnetization, Mössbauer, and field-domain EPR (HFEPR) studies are consistent with this model, which is also supported by theoretical calculations.

2.
Dalton Trans ; 49(27): 9516-9528, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32608402

RESUMO

Two novel mixed valence CoII-CoIII complexes, namely [CoIICoIII(L1)(ab)(mb)2(H2O)]·dmf (1) and [CoCoII(L2)4(H2O)4]·2H2O (2) [H2L1 = (E)-2-((1-hydroxybutan-2-ylimino)methyl)-6-methoxyphenol, ab = 2-amino-butan-1-ol anion, mb = p-methyl benzoate, H2L2 = 3-((2-hydroxy-3-methoxy-benzylidene)-amino)-propionic acid, and dmf = N,N-dimethyl-formamide], were synthesized and characterized by single crystal X-ray diffraction and magnetic studies at low temperature. The structure determination reveals that both complexes belong to the monoclinic system with P21/c (1) and I2/a (2) space groups. Complex 1 is a dinuclear CoIIICoII compound with distorted octahedral cobalt centers showing different coordination environments. In 2, a bent trinuclear CoCoII complex, the coordination environments around the two terminal CoIII sites are alike, whereas they are different in the central CoII ion. Alternating current/direct current (ac/dc) magnetic studies revealed that both complexes show field-induced slow magnetic relaxation. The dc magnetic susceptibility and magnetization data were analyzed with the following Hamiltonianwhere D and E are the axial and rhombic zero-field splitting (zfs) parameters, respectively, and a good agreement between experimental and simulated results was found using the parameters g⊥ = 2.585, g∥ = 2.437, D = +98.1 cm-1, E/D = 0.008 and F = 8.2× 10-5 for 1 and g⊥ = 2.580, g∥ = 2.580, D = +55.4 cm-1, and E/D = 0.000 for 2.

3.
Acc Chem Res ; 53(2): 520-531, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32027486

RESUMO

Since the advent of the first metal-organic frameworks (MOFs), we have witnessed an explosion of captivating architectures with exciting physicochemical properties and applications in a wide range of fields. This, in part, can be understood under the light of their rich host-guest chemistry and the possibility to use single-crystal X-ray diffraction (SC-XRD) as a basic characterization tool. Moreover, chemistry on preformed MOFs, applying recent developments in template-directed synthesis and postsynthetic methodologies (PSMs), has shown to be a powerful synthetic tool to (i) tailor MOFs channels of known topology via single-crystal to single-crystal (SC-SC) processes, (ii) impart higher degrees of complexity and heterogeneity within them, and most importantly, (iii) improve their capabilities toward applications with respect to the parent MOFs. However, the unique properties of MOFs have been, somehow, limited and underestimated. This is clearly reflected on the use of MOFs as chemical nanoreactors, which has been barely uncovered. In this Account, we bring together our recent advances on the construction of MOFs with appealing properties to act as chemical nanoreactors and be used to synthesize and stabilize, within their channels, catalytically active species that otherwise could be hardly accessible. First, through two relevant examples, we present the potential of the metalloligand approach to build highly robust and crystalline oxamato- and oxamidato-MOFs with tailored channels, in terms of size, charge and functionality. These are initial requisites to have a playground where we can develop and fully take advantage of singular properties of MOFs as well as visualize/understand the processes that take place within MOFs pores and somehow make structure-functionalities correlations and develop more performant MOFs nanoreactors. Then, we describe how to exploit the unique and singular features that offer each of these MOFs confined space for (i) the incorporation and stabilization of metals salts and complexes, (ii) the in situ stepwise synthesis of subnanometric metal clusters (SNMCs), and (iii) the confined-space self-assembly of supramolecular coordination complexes (SCCs), by means of PSMs and underpinned by SC-XRD. The strategy outlined here has led to unique rewards such as the highly challenging gram-scale preparation of stable and well-defined ligand-free SNMCs, exhibiting outstanding catalytic activities, and the preparation of unique SCCs, different to those assembled in solution, with enhanced stabilities, catalytic activities, recyclabilities, and selectivities. The results presented in this Accounts are just a few recent examples, but highly encouraging, of the large potential way of MOFs acting as chemical nanoreactors. More work is needed to found the boundaries and fully understand the chemistry in the confined space. In this sense, mastering the synthetic chemistry of discrete organic molecules and inorganic complexes has basically changed our way of live. Thus, achieving the same degree of control on extended hybrid networks will open new frontiers of knowledge with unforeseen possibilities. We aim to stimulate the interest of researchers working in broadly different fields to fully unleash the host-guest chemistry in MOFs as chemical nanoreactors with exclusive functional species.

4.
Inorg Chem ; 58(23): 15726-15740, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31738531

RESUMO

Two mononuclear cobalt(II) compounds of formula [Co(dmphen)2(OOCPh)]ClO4·1/2H2O·1/2CH3OH (1) and [Co(dmbipy)2(OOCPh)]ClO4 (2) (dmphen = 2,9-dimethyl-1,10-phenanthroline, dmbipy = 6,6'-dimethyl-2,2'-bipyridine and HOOCPh = benzoic acid) are prepared and magnetostructurally investigated. Each cobalt(II) ion is six-coordinate with a distorted octahedral CoN4O2 environment. The complex cations are interlinked leading to supramolecular chains (1) and pairs (2) that grow along the crystallographic c-axis with racemic mixtures of (Δ,Λ)-Co units. FIRMS allowed us to directly measure the zero-field splitting between the two lowest Kramers doublets, which led to axial anisotropy values of 58.3 cm-1 ≤ D < 60.7 cm-1 (1) and 63.8 cm-1 ≤ D < 64.1 cm-1 (2). HFEPR spectra of polycrystalline samples of 1 and 2 at low temperatures confirm the positive sign of D and provide an estimate of the E/D quotient [0.147/0.187 (1) and 0.052 (2)]. Detailed ac and dc magnetic studies reveal that 1 and 2 are new examples of field-induced single-ion magnets (SIMs) with small transversal anisotropy. CASSCF/NEVPT2 calculations support these results. Two Orbach processes or one Orbach plus a direct relaxation mechanism provide similar agreements with the nonlinear experimental Arrhenius plots at Hdc = 500 and 2500 G for 1. Two independent relaxation processes occur in 2, but in contrast to 1, an observed linear dependence of ln(τ) vs 1/T substantiates Orbach processes against the most widely proposed Raman and direct mechanisms. The analysis of each relaxation process in 2 provided values for Ea and τ0 that are very close to those found for 1, validating the predominant role of the Orbach relaxations in both compounds and, probably, also in other cobalt(II) SIMs. A mechanism based on a spin-phonon coupling is proposed to account for the SIM behavior in 1 and 2 with any Raman or direct processes being discarded.

5.
J Am Chem Soc ; 141(34): 13601-13609, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31394030

RESUMO

We report a new water-stable multivariate (MTV) metal-organic framework (MOF) prepared by combining two different oxamide-based metalloligands derived from the natural amino acids l-serine and l-methionine. This unique material features hexagonal channels decorated with two types of flexible and functional "arms" (-CH2OH and -CH2CH2SCH3) capable of enabling, synergistically, the simultaneous and efficient removal of both inorganic (heavy metals such as Hg2+, Pb2+, and Tl+) and organic (dyes such as Pyronin Y, Auramine O, Brilliant green, and Methylene blue) contaminants, and, in addition, this MTV-MOF is completely reusable. Single-crystal X-ray diffraction measurements allowed solving the crystal structure of a host-guest adsorbate, containing both HgCl2 and Methylene blue, and offered unprecedented snapshots of this unique dual capture process. This is the very first time that a MOF can be used for the removal of all sorts of pollutants from water resources, thus opening new perspectives for this emerging type of MTV-MOF.

6.
Dalton Trans ; 48(26): 9765-9775, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31011739

RESUMO

This work describes the synthesis, and structural, spectroscopic, and theoretical studies of a mononuclear silver(i) complex with the formula [Ag(Xantphos)(4,4'-(MeO)2-2,2'-bipy)]BF4·DCM (1·BF4) [Xantphos: 4,5-bis(diphenylphosphino)-9,9'-dimethylxanthene]. We provide meaningful insights into the enhancement of the photoluminescence features of this silver(i) complex compared to its copper(i) analogue.

7.
Dalton Trans ; 46(19): 6312-6323, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28452386

RESUMO

This work studies the effect of the σ-Hammett parameter (σp) - i.e., the σ-donation effect caused by substitution at the para position of a bipyridine ligand (4,4'-R2bipy, where R is MeO, Me, H, NO2) - on both the photo- and electro-luminescence features of a series of heteroleptic copper(i) complexes - i.e., [Cu(N^N)(P^P)]+ where N^N and P^P ligands are R2bipy and Xantphos, respectively. By virtue of a comprehensive photophysical, theoretical, and thin-film lighting device - i.e., light-emitting electrochemical cells (LECs) - investigation, we note a clear relationship between the σp and the photo- and electro-luminescence parameters, such as photoluminescence quantum yields, excited-state lifetimes, and emission maxima, as well as device brightness, stability, and efficacy, respectively. As the most relevant finding, the substitution with the group featuring the most negative σp - i.e., MeO - provides a ca. five-fold enhancement of all of the aforementioned figures-of-merit upon comparison within the series of complexes. As such, this work provides a new guideline for a device optimization through a rational ligand design for heteroleptic copper(i) complexes.

8.
Chemistry ; 20(42): 13566-75, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25225027

RESUMO

The synthesis of a series of Ni(II) -salen-based complexes with the general formula of [Ni(H2 L)] (H4 L=R(2) -N,N'-bis[R(1) -5-(4'-benzoic acid)salicylidene]; H4 L1: R(2) =2,3-diamino-2,3-dimethylbutane and R(1) =H; H4 L2: R(2) =1,2-diaminoethane and R(1) =tert-butyl and H4 L3: R(2) =1,2-diaminobenzene and R(1) =tert-butyl) is presented. Their electronic structure and self-assembly was studied. The organic ligands of the salen complexes are functionalized with peripheral carboxylic groups for driving molecular self-assembly through hydrogen bonding. In addition, other substituents, that is, tert-butyl and diamine bridges (2,3-diamino-2,3-dimethylbutane, 1,2-diaminobenzene or 1,2-diaminoethane), were used to tune the two-dimensional (2D) packing of these building blocks. Density functional theory (DFT) calculations reveal that the spatial distribution of the LUMOs is affected by these substituents, in contrast with the HOMOs, which remain unchanged. Scanning tunneling microscopy (STM) shows that the three complexes self-assemble into three different 2D nanoarchitectures at the solid-liquid interface on graphite. Two structures are porous and one is close-packed. These structures are stabilized by hydrogen bonds in one dimension, while the 2D interaction is governed by van der Waals forces and is tuned by the nature of the substituents, as confirmed by theoretical calculations. As expected, the total dipolar moment is minimized.

9.
Dalton Trans ; 41(34): 10249-57, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22790017

RESUMO

New manganese compounds [Mn(HphpzMe)(2)(H(2)phpzMe)(HCO(2))] (1), [Mn(2)(phpzMe)(2)(HphpzMe)(2)(OCH(3))]·2CH(3)OH (2), Na{[Mn(HphpzPh)(phpzPh)(MeOH)(2)](2)}(HCO(2)) (3), [Mn(HphpzPh)(2)(EtOH)(2)]ClO(4)·2EtOH (4) and [Mn(HphpzPh)(2)N(3)] (5) were synthesized and characterized with various techniques. 1, 4 and 5 are mononuclear manganese(III) compounds, 2 is a mixed-valence dinuclear manganese(III/IV) compound, and 3 is a trinuclear compound containing two manganese(III) ions and a sodium(I) ion. A remarkable feature is the spontaneous formation of the formate ion as a result of the methanol or methoxide oxidation in compounds 1 and 3. Using ethanol precludes the formation of the formate and compound 4 is obtained. The molecular structure of all compounds is stabilized by supramolecular interactions, including strong hydrogen bonding and π-π interactions.

10.
Inorg Chem ; 50(19): 9243-55, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21902227

RESUMO

The newly synthesized dinuclear complex [Fe(III)(2)(µ-OH)(2)(bik)(4)](NO(3))(4) (1) (bik, bis(1-methylimidazol-2-yl)ketone) shows rather short Fe···Fe (3.0723(6) Å) and Fe-O distances (1.941(2)/1.949(2) Å) compared to other unsupported Fe(III)(2)(µ-OH)(2) complexes. The bridging hydroxide groups of 1 are strongly hydrogen-bonded to a nitrate anion. The (57)Fe isomer shift (δ = 0.45 mm s(-1)) and quadrupole splitting (ΔE(Q) = 0.26 mm s(-1)) obtained from Mössbauer spectroscopy are consistent with the presence of two identical high-spin iron(III) sites. Variable-temperature magnetic susceptibility studies revealed antiferromagnetic exchange (J = 35.9 cm(-1) and H = JS(1)·S(2)) of the metal ions. The optimized DFT geometry of the cation of 1 in the gas phase agrees well with the crystal structure, but both the Fe···Fe and Fe-OH distances are overestimated (3.281 and 2.034 Å, respectively). The agreement in these parameters improves dramatically (3.074 and 1.966 Å) when the hydrogen-bonded nitrate groups are included, reducing the value calculated for J by 35%. Spontaneous reduction of 1 was observed in methanol, yielding a blue [Fe(II)(bik)(3)](2+) species. Variable-temperature magnetic susceptibility measurements of [Fe(II)(bik)(3)](OTf)(2) (2) revealed spin-crossover behavior. Thermal hysteresis was observed with 2, due to a loss of cocrystallized solvent molecules, as monitored by thermogravimetric analysis. The hysteresis disappears once the solvent is fully depleted by thermal cycling. [Fe(II)(bik)(3)](OTf)(2) (2) catalyzes the oxidation of alkanes with t-BuOOH. High selectivity for tertiary C-H bond oxidation was observed with adamantane (3°/2° value of 29.6); low alcohol/ketone ratios in cyclohexane and ethylbenzene oxidation, a strong dependence of total turnover number on the presence of O(2), and a low retention of configuration in cis-1,2-dimethylcyclohexane oxidation were observed. Stereoselective oxidation of olefins with dihydrogen peroxide yielding epoxides was observed under both limiting oxidant and substrate conditions.


Assuntos
Adamantano/química , Complexos de Coordenação/síntese química , Compostos Férricos/síntese química , Imidazóis/síntese química , Cetonas/síntese química , Catálise , Complexos de Coordenação/química , Compostos Férricos/química , Imidazóis/química , Cetonas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Mossbauer , Difração de Raios X
11.
Dalton Trans ; 39(20): 4991-8, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21491660

RESUMO

Three high-nuclearity manganese(III) clusters have been synthesized and characterized: [Mn8(µ4-O)4(phpzH)8(thf)4] (1), [Mn8(µ4-O)4(phpzH)4(EtOH)4]·2EtOH (2), and [Mn6(µ3-O)4(µ3-Br)2(HphpzEt)6(phpzEt)] (3). Compounds 1 and 2 contain a [Mn8(µ4-O4)(phpzH)8] core in which antiferromagnetic interactions between the manganese(III) ions are found. Compound 3 is a hexanuclear manganese(III) cluster in which weak ferromagnetic interactions appear to be operative. The formation and the stability of the cluster cores in relation to the type of phenol-pyrazole ligand and the reaction conditions are discussed.


Assuntos
Manganês/química , Fenóis/química , Pirazóis/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Ligantes , Magnetismo , Conformação Molecular
12.
Dalton Trans ; (36): 7445-53, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19727466

RESUMO

The reaction of H2phpzR (R = Me, Ph; H2phpzMe = 3(5)-(2-hydroxyphenyl)-5(3)-methylpyrazole and H2phpzPh = 3(5)-(2-hydroxyphenyl)-5(3)-phenylpyrazole) with Mn(O2CR').nH2O (R' = Me and Ph) and (nBu4N)MnO4 in ethanol (EtOH) affords three new manganese(III) compounds, [Mn3(mu3-O)(phpzMe)3(O2CMe)(EtOH)].EtOH (1), (nBu4N)[Mn3(mu3-O)(phpzMe)3(O2CPh)2] (2) and (nBu4N)[Mn3(mu3-O)(phpzPh)3(O2CPh)2] (3). Their synthesis, crystal structure and magnetic properties are reported. Compounds 1-3 are mu3-oxido-centered trinuclear manganese(III) compounds whose edges are bridged by phpzR2- with average intracluster separations of 3.25 A. The three Mn-O-Mn angles are distorted from the equilateral triangle with values in the range of 113 degrees to 124 degrees; 117 degrees to 125 degrees; and 117 degrees to 126 degrees for complexes 1-3, respectively. Hydrogen bonding interactions between the trinuclear units of 1 result in a one-dimensional chain structure. Compounds 2 and 3 have isolated trinuclear units, perhaps as a result of the presence of the bulky nBu4N+ cation. Temperature-dependent magnetic susceptibility studies indicate the presence of both antiferromagnetic and ferromagnetic interactions in compound 1 (J1 = -10.3 cm(-1), J2 = +10.9 cm(-1)), while only antiferromagnetic interactions are present in compounds 2 and 3 (J1 = -4.2 cm(-1), J2 = -10.3 cm(-1) for 2; and J1 = -4.8 cm(-1), J2 = -10.2 cm(-1) for 3), with J1 representing the similar Mn-O-Mn angles and J2 representing the unique Mn-O-Mn angle (Mn(1)-O(1)-Mn(2)).

13.
Inorg Chem ; 47(13): 5919-29, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18543906

RESUMO

The synthesis, crystal structure, and magnetic properties of three new manganese(III) clusters are reported, [Mn 3(mu 3-O)(phpzH) 3(MeOH) 3(OAc)] (1), [Mn 3(mu 3-O)(phpzMe) 3(MeOH) 3(OAc)].1.5MeOH (2), and [Mn 3(mu 3-O)(phpzH) 3(MeOH) 4(N 3)].MeOH (3) (H 2phpzH = 3(5)-(2-hydroxyphenyl)-pyrazole and H 2phpzMe = 3(5)-(2-hydroxyphenyl)-5(3)-methylpyrazole). Complexes 1- 3 consist of a triangle of manganese(III) ions with an oxido-center bridge and three ligands, phpzR (2-) (R = H, Me) that form a plane with the metal ions. All the complexes contain the same core with the general formula [Mn 3(mu 3-O)(phpzR) 3] (+). Methanol molecules and additional bridging ligands, that is, acetate (complexes 1 and 2) and azide (complex 3), are at the terminal positions. Temperature dependent magnetic susceptibility studies indicate the presence of predominant antiferromagnetic intramolecular interactions between manganese(III) ions in 1 and 3, while both antiferromagnetic and ferromagnetic intramolecular interactions are operative in 2.


Assuntos
Magnetismo , Manganês , Compostos Organometálicos/química , Ligantes , Temperatura
14.
Chemistry ; 14(18): 5567-76, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18449873

RESUMO

Copper(II) complexes of the potentially tripodal N,N,O ligand 3,3-bis(1-methylimidazol-2-yl)propionate (L1) and its conjugate acid HL1 have been synthesised and structurally and spectroscopically characterised. The reaction of equimolar amounts of ligand and CuII resulted in the complexes [Cu(L1)]n(X)n (X=OTf-, PF6(-); n=1,2), for which a new bridging coordination mode of L1 is inferred. Although these complexes showed moderate catecholase activity in the oxidation of 3,5-di-tert-butylcatechol, surprising reactivity with the pseudo-substrate tetrachlorocatechol was observed. A chloranilato-bridged dinuclear CuII complex was isolated from the reaction of [Cu(L1)]n(PF6)n with tetrachlorocatechol. This stoichiometric oxidative double dehalogenation of tetrachlorocatechol to chloranilic acid by a biomimetic copper(II) complex is unprecedented. The crystal structure of the product, [Cu2(ca)Cl2(HL1)2], shows a bridging bis-bidentate chloranilato (ca) ligand and ligand L1 coordinated as its conjugate acid (HL1) in a tridentate fashion. Magnetic susceptibility studies revealed weak antiferromagnetic coupling (J= -35 cm(-1)) between the two copper centres in the dinuclear complex. Dissolution of the green complex [Cu2(ca)Cl2(HL1)2] resulted in the formation of new pink-purple mononuclear compound [Cu(ca)(HL1)(H2O)], the crystal structure of which was determined. It showed a terminal bidentate chloranilato ligand and N,N-bidentate coordination of ligand HL1, which illustrates the flexible coordination chemistry of ligand L1.


Assuntos
Benzoquinonas/química , Catecóis/química , Cobre/química , Halogênios/química , Compostos Organometálicos/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Modelos Moleculares , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA