Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
J Nanosci Nanotechnol ; 19(1): 593-601, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327074


The Kossel effect is the diffraction by a periodically structured medium, of the characteristic X-ray radiation emitted by the atoms of the medium. We show that multilayers designed for X-ray optics applications are convenient periodic systems to use in order to produce the Kossel effect, modulating the intensity emitted by the sample in a narrow angular range defined by the Bragg angle. We also show that excitation can be done by using photons (X-rays), electrons or protons (or charged particles), under near normal or grazing incident geometries, which makes the method relatively easy to implement. The main constraint comes from the angular resolution necessary for the detection of the emitted radiation. This leads to small solid angles of detection and long acquisition times to collect data with sufficient statistical significance. Provided this difficulty is overcome, the comparison or fit of the experimental Kossel curves, i.e., the angular distributions of the intensity of an emitted radiation of one of the element of the periodic stack, with the simulated curves enables getting information on the depth distribution of the elements throughout the multilayer. Thus the same kind of information obtained from the more widespread method of X-ray standing wave induced fluorescence used to characterize stacks of nanometer period, can be obtained using the Kossel effect.

Rev Sci Instrum ; 89(9): 096109, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278717


We present the observation of the angular distribution of a characteristic x-ray emission through a periodic multilayer. The emission coming from the substrate on which the multilayer is deposited is used for this purpose. It is generated upon proton irradiation through the multilayer and detected with an energy sensitive CCD camera. The observed distribution in the low detection angle range presents a clear dip at a position characteristic of the emitting element. Thus, such a device can be envisaged as a spectrometer without mechanical displacement and using various ionizing sources (electrons, x-rays, and ions), their incident direction being irrelevant.

Langmuir ; 33(6): 1419-1426, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28099812


The absorptivities of polydiacetylenes (PDAs) used in Langmuir films or vesicles for the development of PDA sensor films or other applications such as nonlinear optics and field-effect transistors are not known, so the polymer contents cannot be deduced from experimental spectra. Here we introduce a novel method, using nuclear reaction analysis (NRA), that allows a quantitative determination of the polymer content X proportion of monomers that have been incorporated into PDA chains. We apply it to pentacosadiynoic acid (PCDA) evaporated microcrystalline films. A calibration curve giving X as a function of the area under an absorption spectrum normalized to the monomer areal density is obtained for blue and red PCDA. The method is applicable to all kinds of films and to other PDAs, provided films with known molecular areal density are available. An example of the application to a PCDA Langmuir film is given.